首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electronic properties of ABX3 type compounds in the cubic phase are systematically studied using the first-principles calculations. The chemical trend of their properties as A or B or X varies is fully investigated. The optical properties of the ABX3 compounds are also investigated. Our calculations show that taking into account the spin–orbit coupling effect is crucial for predicting the accurate band gap of these halide perovskites. We predict that CH3NH3SnBr3 is a promising material for solar cells absorber with a perfect band gap and good optical absorption.  相似文献   

2.
《Current Applied Physics》2018,18(12):1583-1591
We analysed perovskite CH3NH3PbI3-xClx inverted planer structure solar cell with nickel oxide (NiO) and spiro-MeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.  相似文献   

3.
Organohalide perovskite optoelectronics based upon large (mm‐sized) single crystals present exciting opportunities for new device platforms and fundamental studies. Herein, we report CH3NH3PbBr3 and CH3NH3PbI3 single crystals prepared via an inverse temperature crystallization method with strong near infrared photoresponses significantly below the optical gap. Light intensity dependent photocurrent measurements reveal the photoresponse is not a two‐photon phenomenon, but rather is derived from a linear mechanism. The effect (including responsivity and speed) is enhanced in a photoresistor architecture, indicating that the photoresponse is due to absorption into surface trap states in the crystal. Without any optimisation, respectable NIR responsivities at room temperature of ∼10‐2 A W−1 at a low 1V bias operating voltage are achieved. These results again demonstrate the remarkable potential of organohalide perovskites as light sensing materials, and the possibilities for engineering a new class of single crystal‐based optoelectronics.

  相似文献   


4.
Band gap modulation engineering is an important step in the application of optoelectronic materials. In this paper, the first-principles calculations were carried out to study the influence of strain, external electric field, spatial orientation of organic cation on the band gaps and electronic structures of organic-inorganic hybrid halide perovskites CH3NH3PbI3. The results show that both the uniform strain and the tetragonal deformation can modulate the band gap obviously. The electric field of 0.2 V/Å is the critical point of the band gap modulation. The band gap increases when an electric field is applied from 0 to 0.2 V/Å. The electric field above 0.2 V/Å will cause the band gap to decrease. The spatial orientation of the organic cation also has modulation influence on the band gap of CH3NH3PbI3, but has no effect on the direct semiconductor characteristics. The above results will be helpful to study the band gap modulation of other organic-inorganic hybrid halide perovskites.  相似文献   

5.
Organic-inorganic hybrid perovskite solar cells have excellent optoelectronic properties, but their low thermal and chemical stabilities limit their commercial applications. In this paper, a new type of organic-inorganic hybrid perovskite is proposed. Malondiamide (MA,CH2(CONH2)2) and propionamide (PA, CH3CH2CONH2) were used as organic layers, with Pb-I octahedral inorganic layers to form quasi three-dimensional (3D) perovskites. The crystal structure, stability, electronic structure, and optical properties of MAPbI4 and PAPbI4 perovskites were investigated, and the results showed that there were localized states that corresponded to the number of acyl groups in the two perovskites. Energy band calculations showed that the localized states of the two perovskites rose above the bottom of the conduction band. This can be used to regulate the band gap of the two perovskites, which affects the electronic properties and optical absorption characteristics of the two perovskites. Compared with PAPbI4, MAPbI4 has a lower formation energy, lower band gap, lower effective mass of electrons and holes, wider energy range, and larger absorption coefficient, which indicates that MAPbI4 is more suitable for use in solar cells. This study provides guidance for obtaining efficient and stable photovoltaic materials.  相似文献   

6.
The polycrystalline samples La0.67Ca0.33Mn(1?x)Fe x O3 (x?=?0.00,?0.01,?0.03, and 0.1) have been grown in single phase by solid state route. The analysis of the reaction has been done by thermogravimetry and differential thermal analysis measurements. DC electrical resistivity measurements have been carried out down to 15?K. The samples with x?=?0.00, 0.01, and 0.03 exhibit metal–insulator (MI) transition at temperatures 221.5?K, 217?K, and 215?K respectively, whereas the sample with x?=?0.1 is insulating in nature for entire temperature range. Interestingly, the electric transport properties of these samples are not consistent with their magnetic phase transitions and the samples show MI transition at a temperature, T MI, which is significantly lower than the paramagnetic to ferromagnetic transition temperature (T c). The resistivity data below T MI has been analyzed using the empirical relation ρ?=?ρ0?+?ρ1 T n and the data above this temperature has been analyzed using two existing models, Mott's variable range hopping model and spin polaronic conduction model.  相似文献   

7.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The spin dipole–spin dipole and spin–orbit coupling contributions to the zero-field splitting parameters D and E of [CH3–N–CH3]+, [CH3–P–CH3]+, and [CH3–As–CH3]+ have been calculated from CASSCF(14,14)/cc-pVTZ wave functions and the Breit–Pauli Hamiltonian at T1 B3LYP/cc-pVTZ optimized geometries. The spin–orbit coupling contributions represent a minor correction for the dimethylnitrenium cation, which has a triplet ground state. They dominate the spin–spin terms by an order of magnitude in the dimethylphosphenium cation and by more than two orders of magnitude in the dimethylarsenium cation, both of which have a singlet ground state. The properties of all these biradicaloids follow expectations based on the simple algebraic 2-in-2 model of biradical structure.  相似文献   

9.
In a spin‐polarized electron gas, Coulomb interaction couples the spin and motion degrees of freedom to build propagating spin waves. The spin wave stiffness Ssw quantifies the energy cost to trigger such excitation by perturbing the kinetic energy of the electron gas (i.e. putting it in motion). Here we introduce the concept of spin–orbit stiffness, Sso, as the energy necessary to excite a spin wave with a spin polarization induced by spin–orbit coupling. This quantity governs the Coulombic enhancement of the spin–orbit field acting of the spin wave. First‐principles calculations and electronic Raman scattering experiments carried out on a model spin‐polarized electron gas, embedded in a CdMnTe quantum well, demonstrate that Sso = Ssw. Through optical gating of the structure, we demonstrate the reproducible tuning of Sso by a factor of 3, highlighting the great potential of spin–orbit control of spin waves in view of spintronics applications. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
In this study, we built a perovskite solar cells(PSCs) model with a Au/CuSCN/CH3NH3Sn1−xPbxI3/TiO2/FTO glass structure using the SCAPS program and use polynomial fitting to obtain the relationship between the conduction/valence bands of CH3NH3Sn1−xPbxI3 and the x value, which is more complex and accurate than that in any previous research. The influences of thickness, electron and hole mobilities, relative permittivity, effective conduction band density, effective valence band density, and the value of x on the solar cell performance are analyzed. Furthermore, we simulate the situation where the doping concentration changes with the absorption layer depth of the device and a special bandgap is formed. The power conversion efficiency of the device improves from 19.96% to 20.52%, with an open-circuit voltage of 0.776 V, a short-circuit current of 33.79 mA/cm2, and a filling factor of 77.39% when double gradient doping is performed. The application value of gradient doping in the device absorption layer is obtained.  相似文献   

11.
Raman spectra of 1,3‐disilabutane (SiH3CH2SiH2CH3) as a liquid were recorded at 293 K and as a solid at 78 K. In the Raman cryostat at 78 K an amorphous phase was first formed, giving a spectrum similar to that of the liquid. After annealing to 120 K, the sample crystallized and large changes occurred in the spectra since more than 20 bands present in the amorphous solid phase vanished. These spectral changes made it possible to assign Raman bands to the anti or gauche conformers with confidence. Additional Raman spectra were recorded of the liquid at 14 temperatures between 293 and 137 K. Some Raman bands changed their peak heights with temperature but were countered by changes in linewidths, and from three band pairs assigned to the anti and gauche conformers, the conformational enthalpy difference ΔconfH(gaucheanti) was found to be 0 ± 0.3 kJ mol−1 in the liquid. Infrared spectra were obtained in the vapor and in the liquid phases at ambient temperature and in the solid phases at 78 K in the range 4000–400 cm−1. The sample crystallized immediately when deposited on the CsI window at 78 K, and many bands present in the vapor and liquid disappeared. Additional infrared spectra in argon matrixes at 5 K were recorded before and after annealing to temperatures 20–34 K. Quantum chemical calculations were carried out at the HF, MP2 and B3LYP levels with a variety of basis sets. The HF and DFT calculations suggested the anti conformer as the more stable one by ca 1 kJ mol−1, while the MP2 results favored gauche by up to 0.4 kJ mol−1. The Complete Basis Set method CBS‐QB3 gave an energy difference of 0.1 kJ mol−1, with anti as the more stable one. Scaled force fields from B3LYP/cc‐pVQZ calculations gave vibrational wavenumbers and band intensities for the two conformers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Some localized singlet 1,3‐σ‐diradicals, XSi(GeY2)2SiX, (X = H, CH3, SiH3, C(CH3)3, NH2 for X = F; Y = H, CH3, OH, NH2, SiH3 for X = H) are theoretically designed by the orbital phase theory, the density functional theory (DFT) calculations , the second order Møller–Plesset perturbation theory (MP2), and the complete active space self‐consistent field (CASSCF) methods. The silicon‐centered singlet diradicals are more stable than the lowest triplets and than the bicylic σ‐bonded isomers if the isomers exist. The most stable singlet diradicals are not the π‐type diradicals, but the σ‐type diradicals where the radicals interact with each other through the Si? Ge bonds in the four‐membered rings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We investigate the spin Hall magnetoresistance (SMR) in niobium (Nb) attached to Y3Fe5O12 near the superconducting critical temperature (Tc) of Nb. The SMR vanishes after cooling the sample below Tc, and recovers if the temperature is raised. When a magnetic field larger than the critical field of Nb is applied, the SMR re‐emerges with an enhanced magnitude even if the temperature is below Tc. The experimental results demonstrate that the SMR could be completely suppressed by the coupling between superconducting condensation and spin–orbit interaction in superconductors. In addition to the fundamental physics on the charge–spin interactions in superconductors, our work adds a different dimension to superconducting spintronics. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
The dielectric constant of (CH3NH3)2 CdCl4 has been measured as a function of temperature in the submillimeter range. Freshly grown samples with a wide domain structure at room temperature show a pronounced dichroism in this spectral range which is caused by the orientation of the molecules in the room temperature orthorhombic phase and their response to the electromagnetic wave.  相似文献   

15.
Using first‐principles calculations and semi‐classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm–3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
The Raman and infrared spectra (4000 to 50 cm–1) of the gas, liquid or solution, and solid have been recorded of n‐propylamine, CH3CH2CH2NH2. Variable temperature (−60 to −100 °C) studies of the Raman (1175 to 625 cm–1) and far infrared (600 to 10 cm–1) spectra dissolved in liquid xenon were carried out. From these data, the five possible conformers were identified and their relative stabilities obtained with enthalpy difference relative to trans–trans (Tt) for trans–gauche (Tg) of 79 ± 9 cm–1 (0.9 ± 0.1 kJ/mol); for Gg of 91 ± 26 cm–1 (1.08 ± 0.3 kJ/mol); for Gg′ of 135 ± 21 cm–1 (1.61 ± 0.2 kJ/mol); for Gt of 143 ± 11 cm–1 (1.71 ± 0.1 kJ/mol). The percentage of the five conformers is estimated to be 18% for the Tt, 24 ± 1% for Tg, 23 ± 3% for Gg, 18 ± 1% for Gg′ and 18 ± 1% for Gt at ambient temperature. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug‐cc‐pVTZ from both second‐order Møller–Plesset (MP2, full) and density functional theory calculations by the Becke, three‐parameter, Lee–Yang–Parr method. Vibrational assignments were provided for the observed bands for all five conformers, which are supported by MP2(full)/6‐31G(d) ab initio calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters were obtained from adjusted MP2(full)/6‐311+G(d,p) calculations. The results are discussed and compared with the corresponding properties of some related molecules. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The spontaneous polarization influence on the refractive index of BaTiO3 and KNbO3 perovskites is analysed from their band structure. The coupling effects between the conduction band edge and the spontaneous polarization are expressed through the Bloch orbital interactions and allow to interpret the presence of a precursor polarization in the paraelectric phase and the refractive index experimental data.  相似文献   

18.
We use moving‐window two‐dimensional correlation spectroscopy (MW‐2DCOS) for phase‐specific Raman analysis of the n‐alkane (C21H44) during melting from the crystalline solid phase to the intermediate rotator phase and to the amorphous molten phase. In MW‐2DCOS, individual peak‐to‐peak correlation analysis within a small subset of spectra provides both temperature‐resolved and spectrally disentangled Raman assignments conducive to understanding phase‐specific molecular interactions and chain configurations. We demonstrate that autocorrelation MW‐2DCOS can determine the phase transition temperatures with a higher resolving power than commonly used analysis methods including individual peak intensity analysis or principal component analysis. Besides the enhanced temperature resolving power, we demonstrate that asynchronous 2DCOS near the orthorhombic‐to‐rotator transition temperature can spectrally resolve the two overlapping peaks embedded in the Raman CH2 twisting band in the orthorhombic phase, which had been only predicted but not observed because of thermal broadening near the melting temperature. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
We report on the first‐order and second‐order Raman scattering (SORS) by longitudinal optical (LO) phonons in perovskite semiconductor CsSnI3. The intensity of SORS is stronger than that of the first order. The spectral line shape of SORS is asymmetric and much broader than that of the first order. It is identified that the strong SORS intensity is attributable to the triply enhanced resonant process, which is naturally implemented through the peculiar band structure of this semiconductor compound having two adjacent parallel conduction bands with a separation close to the energy of two LO phonons. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper reports about high reactivity of α‐silylamines in the reaction with CCl4. Unlike Et3N, α‐silylamines rapidly react with CCl4 upon irradiation with daylight to form α‐silylamine hydrochloride salts in 92–98% yields. The influence of structure of α‐silylamines and solvent on the degree of conversion was displayed. The interaction of α‐silylamines with CCl4 was studied by NMR, ESR, and IR spectroscopy. C‐centered radicals of α‐silylamines were detected by ESR spectroscopy with spin traps (MNP, ND, and PBN) in reaction mixtures in CH3CN and C6H6 and it show the radical character of this reaction. Both CH3CN and C6H6 serve as solvents as well as reagents for this reaction. A mechanism of an interaction between α‐silylamines and CCl4 is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号