首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out‐coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out‐coupling from the top‐emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out‐coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.  相似文献   

2.
An effective method is presented for enhancing the outcoupling efficiency of translucent/bi‐directional organic light‐emitting diodes (TL/BD‐OLEDs) with a bottom indium tin oxide (ITO) anode and a top cathode comprised of a thin Ag layer covered with an organic capping layer. Upon insertion of a nanoparticle (NP)‐based scattering layer (NPSL) between the substrate and the ITO anode, the TL/BD‐OLEDs exhibit significantly enhanced external quantum efficiency (EQE) in both emission directions. Furthermore, the NPSL improves the color stability of the TL/BD‐OLEDs over a wide range of viewing angles. Simulations based on geometrical and statistical optics are performed to elucidate the mechanism by which the efficiency is enhanced and to establish strategies for further optimization. Simulations performed on the scattering layers with varying NP volume percentage reveal that the bottom‐side emission is governed by competition between waveguide‐mode extraction and backward scattering by NPs in the film, while the top‐side emission is largely dominated by the latter. Optimized bi‐directional OLEDs achieve a 1.64‐fold enhanced EQE compared to reference devices without NPSL.  相似文献   

3.
Organic optoelectronic devices including organic light‐emitting diodes (OLEDs) and polymer solar cells (PSCs) have many advantages, including low‐cost, mechanical flexibility, and amenability to large‐area fabrication based on printing techniques, and have therefore attracted attention as next‐generation flexible optoelectronic devices. Although almost 100% internal quantum efficiency of OLEDs has been achieved by using phosphorescent emitters and optimizing device structures, the external quantum efficiency (EQE) of OLEDs is still limited due to poor light extraction. Also, although intensive efforts to develop new conjugated polymers and device architectures have improved power conversion efficiency (PCE) up to 8%–9%, device efficiency must be improved to >10% for commercialization of PSCs. The surface plasmon resonance (SPR) effect of metal nanoparticles (NPs) can be an effective way to improve the extraction of light produced by decay of excitons in the emission layer and by absorption of incident light energy within the active layer. Silver (Ag) NPs are promising plasmonic materials due to a strong SPR peak and light‐scattering effect. In this review, different SPR properties of Ag NPs are introduced as a function of size, shape, and surrounding matrix, and review recent progress on application of the SPR effect of AgNPs to OLEDs and PSCs.  相似文献   

4.
The demonstration of high efficiency and color tunability has brought organic light‐emitting devices (OLEDs) into the lighting and display market. High efficiency is one of the key issues for their commercial applications, for which much effort has been devoted to developing novel materials and device structures. It is well known that around 80% of the generated photons are trapped in OLED structure, so that there is still the greatest scope for significant improvements in its efficiency. This has driven the research towards the integration of micro/nano patterns into device structures that benefit from their abilities in manipulating the generation and propagation of photons. Micro/nano patterns with random or periodic morphologies have demonstrated their effect on the outcoupling of the trapped photons within the device. Moreover, the emitting properties other than the light extraction could be manipulated by introducing the micro/nano patterns. This article reviews the recent progresses in improving the light extraction and manipulating the emission properties of the OLEDs through the introduction of the micro/nano patterns by various fabrication strategies. The light manipulation of the micro/nano patterns in organic photovoltaics is briefly discussed considering its similar working principle and fabrication strategies to that of the OLEDs.

  相似文献   


5.
Organic light‐emitting diodes (OLEDs) are discussed for electro‐optical integrated devices that are used for optical signal transmission. Organic optical devices including polymeric optical fibers are used for optical communication applications to realize polymeric electro‐optical integrated devices. The OLEDs were fabricated by vacuum process, i.e. the organic molecular beam deposition (OMBD) technique or a solution process on a polymeric or a glass substrate, for comparison. Optical signals faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing rubrene doped in 8‐hydoxyquinolinum aluminum (Alq3), as an emissive layer. OLEDs fabricated by solution process utilizing rubrene doped in carrier‐transporting materials have also discussed. OLEDs utilizing polymeric materials by solution process are also fabricated and discussed. Moving‐picture signals are transmitted utilizing both vacuum‐ and solution‐processed OLEDs, respectively.  相似文献   

6.
有机电致发光白光器件的研究进展   总被引:11,自引:7,他引:4  
雷钢铁  段炼  王立铎  邱勇 《发光学报》2004,25(3):221-230
在十多年的时间里,有机电致发光二极管(Organic Lightemitting Diodes,OLEDs)的研究和应用取得了长足的进展。有机电致发光器件具有许多优点,例如:自发光、视角宽、响应快、发光效率高、温度适应性好、生产工艺简单、驱动电压低、能耗低、成本低等,因此有机电致发光器件极有可能成为下一代的平板显示终端。有机电致发光白光器件因为可以用于全彩色显示和照明,已成为OLED研究中的热点。介绍了有机电致发光白光器件的研究进展,按发光的性质将白光器件分为荧光器件和磷光器件两类,按发光层数将白光器件分为单层和多层器件,对相关材料、器件结构、发光机理等方面进行了讨论。  相似文献   

7.
Mutli-layer light-emitting organic field-effect transistors (OLETs) are shown to have high internal quantum efficiencies approaching 5%, a value much higher than the conventional organic light-emitting diodes (OLEDs). This work re-examines some data reported in the literature on OLETs and put forward a model that explains the charge transport and light emission process. Our analyses suggest that the reported improvements on the internal quantum efficiency of OLETs are directly linked to charge recombination and light emission and is independent of the drain-source current as well as the gate-induced charge density in the accumulation layer. Such independence allows the internal quantum efficiency to increase as the drain-source current decreases. The process differs from the charge transport in OLEDs where recombination and light emission are directly tied to the injected space charge densities thereby preventing the internal quantum efficiency of OLEDs to increase even when the device current is lowered.  相似文献   

8.
Indium Tin Oxide (ITO) coated glass is currently the preferred transparent conducting electrode (TCE) for organic light emitting diodes (OLEDs). However, ITO has its drawbacks, not least the scarcity of Indium, high processing temperatures, and inflexibility. A number of technologies have been put forward as replacements for ITO. In this paper, an OLED based on a gold grid TCE is demonstrated, the light emission through the grid is examined, and luminance and current measurements are reported. The gold grid has a sheet resistance of 15 Ω□−1 and a light transmission of 63% at 550 nm, comparable to ITO, but with advantages in terms of processing conditions and cost. The gold grid OLED has a lower turn‐on voltage (7.7 V versus 9.8 V) and achieves a luminance of 100 cdm−2 at a lower voltage (10.9 V versus 12.4 V) than the reference ITO OLED. We discuss the lower turn‐on voltage and the uniformity of the light output through the gold grid TCE and examine the conduction mechanisms in the ITO and gold grid TCE OLEDs.  相似文献   

9.
We show the first direct measurement of the potential distribution within organic light emitting diodes (OLEDs) under operation and hereby confirm existing hypotheses about charge transport and accumulation in the layer stack. Using a focused ion beam to mill holes in the diodes we gain access to the cross section of the devices and explore the spatially resolved potential distribution in situ by scanning Kelvin probe microscopy under different bias conditions. In bilayer OLEDs consisting of tris(hydroxyquinolinato) aluminum (Alq3)/N, N ′‐bis(naphthalene‐1‐yl)‐N,N ′‐bis(phenyl) benzidine (NPB) the potential exclusively drops across the Alq3 layer for applied bias between onset voltage and a given transition voltage. These findings are consistent with previously performed capacitance–voltage measurements. The behavior can be attributed to charge accumulation at the interface between the different organic materials. Furthermore, we show the potential distribution of devices with different cathode structures and degraded devices to identify the cathode interface as main culprit for decreased performance. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
Electroluminescent intensity and external quantum efficiency (EQE) in ultraviolet organic light‐emitting diodes (UV OLEDs) have been remarkably enhanced by using a graded hole‐injection and ‐transporting (HIT) structure of MoO3/N,N ′‐bis(naphthalen‐1‐yl)‐N,N ′‐bis(phenyl)‐benzidine/MoO3/4,4′‐bis(carbazol‐9‐yl)biphenyl (CBP). The graded‐HIT based UV OLED shows superior short‐wavelength emis‐ sion with spectral peak of ~410 nm, maximum electroluminescent intensity of 2.2 mW/cm2 at 215 mA/cm2 and an EQE of 0.72% at 5.5 mA/cm2. Impedance spectroscopy is employed to clarify the enhanced hole‐injection and ‐transporting capacity of the graded‐HIT structure. Our results provide a simple and effective approach for constructing efficient UV OLEDs. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
刘萌娇  张新稳  王炯  秦雅博  陈月花  黄维 《物理学报》2018,67(20):207801-207801
有机发光二极管(OLED)具有功耗低、重量轻、色域宽、响应时间快及对比度高等优点,在全彩平板显示和固态照明等领域均显现出巨大的应用潜力,受到人们的广泛关注.然而,较低的光输出效率使得器件的外量子效率远低于内量子效率,这严重制约了OLED器件的发展和应用.因此如何提高OLED器件的光耦合输出效率已成为备受关注的研究课题.本文主要介绍了采用非周期微纳结构提高OLED器件光耦合输出效率的最新研究进展,对随机微纳透镜结构、光散射介质层、聚合物多孔散射薄膜、随机凹凸波纹结构及随机褶皱结构等多种对器件亮度分布和光谱稳定性无明显影响的光耦合输出技术进行了总结和讨论.最后,对提高OLED器件光耦合输出研究做了总结和展望.  相似文献   

12.
We investigated the annealing effect on solution processed small organic molecule organic films, which were annealed with various conditions. It was found that the densities of the spin-coated (SC) films increased and the surface roughness decreased as the annealing temperature rose. We fabricated corresponding organic light emitting diodes (OLEDs) by spin coating on the same annealing conditions. The solution processed OLEDs show the considerable efficiency and stability, which were prior or equivalent to the vacuum-deposited (VD) counterparts. Our research shows that annealing process plays a key role in prolonging the lifetime of solution processed small molecule OLEDs, and the mechanism for the improvement of the device performance upon annealing was also discussed.  相似文献   

13.
In this work organic light emitting devices (OLEDs) were fabricated implementing gratings, in order to extract waveguided electroluminescence (EL). The gratings were recorded by exposing thin films of the molecular azo glass N, N′-bis (4-phenyl)-N, N′-bis [(4-phenylazo)-phenyl] benzidine (AZOPD) to holographic light patterns. The photopatterned AZOPD serves as hole transport material for devices with aluminum-tris(8-hydroxyquinoline) doped with 1% of 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (Alq3:DCM) as emissive/electron transport layer. The corrugated devices showed enhanced emission in the forward direction. The emitted light is polarized preferably parallel to the grating lines. In addition, we have found a doubling in the total luminance with respect to the unstructured device.  相似文献   

14.
Co50Fe50-xSix合金的结构相变和磁性   总被引:1,自引:0,他引:1       下载免费PDF全文
汪津  赵毅  谢文法  段羽  陈平  刘式墉 《物理学报》2011,60(10):107203-107203
利用实验测量和理论计算相结合的方法,研究了介于B2结构CoFe低有序合金和L21结构Co2FeSi高有序合金之间的Co50Fe50-xSix合金的结构相变、磁相变、分子磁矩和居里温度.采用考虑Coulomb相互作用的广义梯度近似(GGA+U)方法计算了合金的能带结构.研究发现,合金出现较强的原子有序倾向,表现出较强的共价成相作用.合金的晶格常数、磁矩、居里温度随Si含量的增加而线性地降低,极限成分Co2FeSi合金的分子磁矩和居里温度分别达到5.92μB和777 ℃.原子尺寸效应导致合金晶格发生变化,但并未成为居里温度和分子磁矩变化的主导因素.分子磁矩的变化符合Slater-Pauling原理,但发现原子磁矩的变化并非线性,据此提出了共价成相对磁性影响的观点.采用Stearns理论解释了居里温度的变化趋势,排除了原子间距对居里温度的主导影响作用.能带计算的结果还表明,Co2FeSi作为半金属材料并非十分完美,可能在实际应用中会出现自旋极化率降低的问题.发现该系列合金的结构相变和磁相变随着成分的变化聚集在窄小的成分和温度范围内. 关键词: 磁性 Heusler合金 结构相变  相似文献   

15.
Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L’Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.  相似文献   

16.
有机发光二极管光取出技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
杨洋  陈淑芬  谢军  陈春燕  邵茗  郭旭  黄维 《物理学报》2011,60(4):836-845
有机发光二极管(OLED)在通信、信息、显示和照明等领域均显现出巨大的商业应用前景,十几年来一直是光电信息领域的研究热点之一.但是,OLED的外量子效率远低于内量子效率,极大程度地制约了其发展和应用.本文主要介绍了多种有效提高器件效率的光取出技术,对微透镜、光子晶体结构、纳米图案和纳米多孔膜以及微腔技术等多种OLED修饰方法进行了回顾和讨论.在此基础上,对一些光取出技术的研究做了展望.  相似文献   

17.
Improved outcoupling efficiency of organic light emitting diodes (OLEDs) is demonstrated by incorporating a nanostructured indium tin oxide (NSITO) film between a conducting anode and a glass substrate. NSITO film was fabricated using rf-sputtering at oblique angle (85°). Significant reduction in refractive index and improved transmission of NSITO film was observed. OLEDs were then fabricated onto NSITO film to extract the ITO-glass waveguided modes. Extraction efficiency was enhanced by 80% without introducing any detrimental effects to operating voltage, current density, and angular invariance of emission spectra of OLEDs.  相似文献   

18.
有机电致发光器件(OLED)经过近三十年的发展,已经在照明和显示上得到一定程度的应用.OLED具有全固态、响应速度快、易于实现柔件显示等优点.由于磷光材料的应用,其内量子效率几乎达到了理论的极限值100%,但其外量子效率却只有20%左右,制约外量子效率进一步提高的主要因素是器件的光取出效率.本文从提高OLED光取出效率的方法入手,综述了国内外关于顶发射和底发射有机发光器件光取出效率增强的研究现状、最新进展及以后的研究方向.  相似文献   

19.
有机层界面对双层有机发光二极管复合效率的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
建立了双层有机发光二极管中载流子在有机层界面复合的无序跳跃理论模型.由于有机分子材料的空间及能带结构的无序性,采用刚体模型处理有机层界面问题是不恰当的,而采用无序跳跃模型比较合理.复合效率及复合电流由载流子跳跃距离、有机层界面的有效势垒高度及该界面处的电场强度分布所决定:在双层器件ITO/α-NPD/Alq3/Al中,当所加电压小于19.5V时,复合效率随着载流子跳跃距离的增加而增加,而大于19.5V时,复合效率随着其距离的增加而减少;复合效率随着有机层界面有效势垒高度的增加而增加; 关键词: 有机层界面 双层有机发光二极管 复合效率 有效势垒高度 无序跳跃模型  相似文献   

20.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号