首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The electrostatic simulations of the radio frequency (RF) heating mechanism, excitations, and ionization process of an electron plasma are carried out using a two‐dimensional (2D) particle‐in‐cell (PIC) code. RF drives with excitation frequencies of 1–15 MHz and amplitudes of 5 and 10 V were applied at two different axial positions, to the centre and to one end on the electrode stack of the ELTRAP device, at ultra‐high vacuum conditions. It is observed that the axial kinetic energy (eV) profile of the confined electrons increases with an increase of the RF excitation amplitudes, and densities from 5 × 107 to 1012 m?3 for all cases under consideration. The simulation results indicate that with continuous RF excitations, the electron heating in the beginning is higher at the trap wall of the device and extends towards the central region of the trap over a simulation time of up to 100 µs. These results on the electron heating are in good agreement with the experimental findings (optical diagnostics of ELTRAP). The heating effect is larger when the RF power is applied from the position close to one end of the trap in comparison to the central position. Monte–Carlo PIC simulations with hydrogen as a background gas are also performed to evaluate the ionization process at pressures of 10?8, 10?7, and 10?6 torr using the same electron plasma densities. The results show that at increasing pressures, the electron‐neutral collisions rate increases linearly with the background gas pressure. Increased collision frequency is obtained at higher RF drive amplitudes, which proportionally increases electron temperature, so that more ionization and secondary electrons are generated.  相似文献   

2.
针对亚毫米波混频二极管管对电路模型不够精确的问题,采用场路结合协同分析,将进出二极管的频率信号分类处理,建立了一种应用于亚毫米波分谐波混频器电路的反向并联二极管对精确电路模型。基于获取的管对精确电路模型,建立了全局性的分谐波混频器电路的集总元件等效电路模型,设计并实现了一款183GHz分谐波混频器。测试结果表明混频器在本振频率为92GHz、功率为2mW,射频频率176~192GHz范围内,双边带变频损耗小于6.8dB,等效噪声温度小于800K,在182GHz测得最小双边带变频损耗为4.9dB,与仿真数据吻合较好。  相似文献   

3.
石向阳  刘杰  蒋均  陈鹏  陆彬  张健 《强激光与粒子束》2018,30(9):093101-1-093101-6
设计了基于容性肖特基二极管的220 GHz非平衡三倍频器。首先对容性肖特基二极管进行测试和关键参数提取,建立了肖特基二极管的等效电路模型,以此为基础进行三倍频电路设计;在倍频电路设计中通过引入紧凑悬置微带谐振单元(CSMRC)滤波结构来减小信号传输损耗;由于三倍频电路设计中难以实现全波阻抗匹配,因此采用了整体电路结构谐波平衡调匹配方法设计倍频电路,最后对制备出的倍频器进行测试和分析;实验测试结果表明:倍频器在213.1~221.6 GHz范围内输出功率大于10 mW,倍频效率大于5%,最高输出功率为18.7 mW@218.6 GHz,最高倍频效率为8.24%@217.9 GHz。  相似文献   

4.
In this paper, novel photonic delay lines (DLs) using Vernier/non‐identical ring resonators (VRRs) are proposed and demonstrated, which are capable of simultaneous generation of multiple different delays at different wavelengths (frequencies). The simple device architectures and full reconfigurability allow the DLs to be integrated with other functional building blocks in photonic integrated circuits to realize on‐chip, complex multi‐λ microwave photonic signal processors with reduced system complexity. To prove the concept, DLs using VRRs in cascaded and coupled configurations have been fabricated in TriPleXTM waveguide technology, which enables a very low delay‐induced loss of approximately 0.18 dB/100 ps. The fabricated DLs demonstrated simultaneous generation of four incremental delays, where a maximum incremental step of 550 ps and a corresponding top delay of 1650 ps were measured for a bandwidth up to 1 GHz. To our knowledge, this is the first report on VRRs for delay generation functionalities.  相似文献   

5.
A semiconductor device, a microSD card, was measured by using two XRF instruments. 2D elemental images were obtained using a micro‐XRF system with a spatial resolution of 10 µm. Elemental distributions of the near‐surface region of the sample were clearly shown. Titanium was observed in the resin constituting the sample. Nickel and gold were observed on a terminal and localization of the sample. Elemental distribution of copper reflected the circuit structure of the measurement area that was in the neighborhood of the sample surface. Moreover, the elemental depth distributions of the sample were measured by using a confocal micro‐XRF instrument. The confocal micro‐XRF instrument was constructed in the laboratory with fine‐focus polycapillary x‐ray optics. The depth resolution of the developed spectrometer was 13.7 µm at an energy of Au Lβ (11.4 keV). The elemental images obtained at near‐surface by confocal micro‐XRF were the same as the results obtained from 2D micro‐XRF. However, different Cu images were obtained at a depth of several tens of micrometers. This indicates that microSD cards consist of a few different Cu‐circuit structure designs. The elemental depth distributions of each circuit structure of the semiconductor device were clearly shown by confocal micro‐XRF. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Two‐dimensional transition metal dichalcogenides (TMDCs) are potential candidate materials for future thin‐film field effect transistors (FETs). However, many aspects of this device must be optimized for practical applications. In addition, low‐frequency noise that limits the design window of electronic devices, in general, must be minimized for TMD‐based FETs. In this study, the low‐frequency noise characteristics of multilayer molybdenum disulphide (MoS2) FETs were investigated in detail, with two different contact structures: titanium (Ti) metal–MoS2 channel and Ti metal–TiO2 interlayer–MoS2 channel. The results showed that the noise level of the device with a TiO2 interlayer reduced by one order of magnitude compared with the device without the TiO2 interlayer. This substantial improvement in the noise characteristics could be explained using the carrier number of fluctuation model. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
In this paper, we will review the state‐of‐the‐art of LiNbO3 based integrated electro‐optic modulators and will show how micro‐structuring techniques such as etching, domain inversion and thin film processing can be used to realize new configurations which can take the performance to unprecedented levels. In particular, we will review recent results on the use of domain inversion on a micron scale and we report on the fabrication of a chirp‐free modulator having ∼ 2 V switching voltage and bandwidth of 15 GHz designed by placing the waveguide arms of the Mach‐Zehnder interferometer in opposite domain oriented regions. We also review some of the new modulation formats (e.g. DQPSK) that can represent an application development of the presented micro‐structured devices. Finally, we address the issue of the integration of the modulator chip in a transmitter board comprising tunable laser, bias‐control electronics and RF driver. The requirements of integration can even push further the reduction in size of modulator chips, thus making more crucial the use of micro‐ and nano‐structuring techniques.  相似文献   

8.
Single‐crystal diamond is a material with great potential for the fabrication of X‐ray photon beam‐position monitors with submicrometre spatial resolution. Low X‐ray absorption combined with radiation hardness and excellent thermal‐mechanical properties make possible beam‐transmissive diamond devices for monitoring synchrotron and free‐electron laser X‐ray beams. Tests were made using a white bending‐magnet synchrotron X‐ray beam at DESY to investigate the performance of a position‐sensitive diamond device using radiofrequency readout electronics. The device uniformity and position response were measured in a 25 µm collimated X‐ray beam with an I‐Tech Libera `Brilliance' system. This readout system was designed for position measurement and feedback control of the electron beam in the synchrotron storage ring, but, as shown here, it can also be used for accurate position readout of a quadrant‐electrode single‐crystal diamond sensor. The centre‐of‐gravity position of the F4 X‐ray beam at the DORIS III synchrotron was measured with the diamond signal output digitally sampled at a rate of 130 Msample s?1 by the Brilliance system. Narrow‐band filtering and digital averaging of the position signals resulted in a measured position noise below 50 nm (r.m.s.) for a 10 Hz bandwidth.  相似文献   

9.
准两腔振荡器的理论和实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据两腔振荡器和返波管的特点提出了准两腔振荡器,其作用机理是两腔振荡器的机理,结构类似返波管.这种结构主要由调制腔组和换能腔组两部分组成,调制腔组实现电子束速度调制,调制后的电子束在通过一个微波场较弱的区间时实现电子束群聚,然后在换能腔组实现电子能量到微波能量的转化,并通过输出结构输出;同时,调制腔组和换能腔组之间存在微波耦合,换能腔组中的一部分微波能量可以耦合到调制腔组,形成一个正反馈回路,在一定条件下实现微波振荡.根据此理论,根据Sinus-700加速器的参数(800 kV,10 kA)设计了一个X波段的高功率微波器件,2.5维Particle in Cell (PIC)程序模拟的效率为28%,微波频率为9.42GHz,微波输出功率为2.25GW,实验上得到的微波输出为微波频率9.40GHz,微波输出功率2.44GW. 关键词: 两腔振荡器 返波管 多波切仑可夫微波器件  相似文献   

10.
电容式RF MEMS开关在控制高功率射频信号时会发生自锁失效,由于开关桥膜与介电层之间的粗糙接触,开关的down态电容会发生退化,因此很难建立开关自锁失效阈值功率的高保真预测模型。提出了3D电磁-等效电路仿真对比建模的方法。建立开关的3D电磁仿真模型,仿真得到具有任一表面粗糙度水平的介电层粗糙开关的隔离度(S21)曲线;再建立同一开关的等效电路模型,通过调谐其down态电容值,使得仿真得到的S21曲线与3D电磁模型仿真结果尽可能吻合;此时,可以确定一组根据开关3D电磁仿真模型设定的表面粗糙度水平与等效电路模型调谐好的down态电容值的关系;改变开关介电层的表面粗糙度水平,并重复上述步骤,确定了任一开关的介电层表面粗糙度与开关down态电容退化的关系。采用文献的down态电容实测数据,初步验证了该方法的可行性和合理性。并利用所得的开关down态电容随介电层表面粗糙度退化的特性,对简化的(介电层光滑)开关自锁失效阈值功率解析计算式进行了修订,可扩展用于预测介电层粗糙开关的功率容量。  相似文献   

11.
李正红  谢鸿全 《物理学报》2019,68(5):54103-054103
作为一个典型的高功率微波振荡器,过模返波管(backward wave oscillator,BWO)的束波互作用过程复杂,束流负载效应影响明显,但是作为振荡器本身,其本质就是一个正反馈电路,电子从阴极发射后,穿过谐振反射腔和慢波结构(slow-wave structure,SWS),在SWS区电子动能转化为微波能,其中的一部分微波反馈到谐振反射腔,实现对电子束的调制,其他微波通过后面输出端口向外辐射.本文根据这种正反馈机制,建立器件工作模式等效电路和束波互作用的自洽过程,从理论上给出正反馈机制对器件模式控制、起振电流等参数的影响,并模拟研究了这种反馈机制对模式控制的影响,由此设计了一个能够在(1 MV,20 kA)电子束条件下克服模式竞争的过模BWO,其微波输出功率为7.9 GW,频率为8.68 GHz,相应的效率为39.5%.  相似文献   

12.
This paper presents a circuit model for a two-electrode AC discharge, which has two electrodes separated from the discharge gap by an insulator. The model consists of a series connection of an equivalent circuit for plasma and two capacitors for insulator. The equivalent circuit for plasma was constructed using the measured electrical properties of a two-electrode DC discharge. The validity of model was checked with experiments on a three-electrode test device; two electrodes exposed to the discharge gap and the other electrode separated from the discharge gap by an insulator. The measured voltages of the test device are compared with those obtained by circuit simulation. For various waveforms, which are being used widely to drive an AC plasma display panel, the results of circuit simulation agree well with experiment.  相似文献   

13.
Ultrathin‐thickness single‐junction Si‐based solar cells can be developed to enhance photoelectric conversion efficiency (PECE) approaching to Shockley–Queisser limit. However, loss of short circuit current is a crucial factor that dramatically affects PECE improvement. Even though many studies have focused on rare reflector architecture for facilitating near‐infrared radiation absorption, PECE is still constraint due to its fabrication cost. Herein, an upconversion sustainable micro‐optical trapping device is reported. Using a systematic procedure, a high upconversion performance core–shell‐nanoparticles (CSNPs) structure is synthesized. Accordingly, silica diatom microporous frustule is a good electromagnetic field localization chamber, upon which CSNPs are embedded through a microassemble synthesis. This emerging device can be support on ultrathin‐thickness single‐junction Si‐based solar cells as a rare absorber with its low preparation cost. In the experiment, CSNPs upconversion optical density by surface plasmon resonance of Au nanoparticle's enhancement can be increased five‐time greater than NaYF4 without SiO2 coating. A finite difference time domain simulation and real color luminescence images in this study are also demonstrated.  相似文献   

14.
An integrated photonic‐on‐a‐chip device based on a single organic‐inorganic di‐ureasil hybrid was fabricated for optical waveguide and temperature sensing. The device is composed by a thermal actuated Mach‐Zehnder (MZ) interferometer operating with a switching power of 0.011 W and a maximum temperature difference between branches of 0.89 ºC. The MZ interferometer is covered by a Eu3+/Tb3+ co‐doped di‐ureasil luminescent molecular thermometer with a temperature uncertainty of 0.1ºC and a spatial resolution of 13 µm. This is an uncommon example in which the same material (an organic‐inorganic hybrid) that is used to fabricate a particular device (a thermal‐actuated MZ interferometer) is also used to measure one of the device intrinsic properties (the operating temperature). The photonic‐on‐a‐chip example discussed here can be applied to sense temperature gradients with high resolution (10−3 ºC·µm−1) in chip‐scale heat engines or refrigerators, magnetic nanocontacts and energy‐harvesting machines.  相似文献   

15.
In vivo microstructures of the affected feet of collagen‐induced arthritic (CIA) mice were examined using a high‐resolution synchrotron radiation (SR) X‐ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six‐week‐old DBA/1J mice that were immunized with bovine type II collagen and grouped as grades 0–3 according to a clinical scoring for the severity of arthritis. An X‐ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens before being captured with a digital charge‐coupled‐device camera. Various changes in the joint microstructure, including cartilage destruction, periosteal born formation, articular bone thinning and erosion, marrow invasion by pannus progression, and widening joint space, were clearly identified at each level of arthritis severity with an equivalent pixel size of 2.7 µm. These high‐resolution features of destruction in the CIA models have not previously been available from any other conventional imaging modalities except histological light microscopy. However, thickening of the synovial membrane was not resolved in composite images by the SR refraction imaging method. In conclusion, in vivo SR X‐ray microscopic imaging may have potential as a diagnostic tool in small animals that does not require a histochemical preparation stage in examining microstructural changes in joints affected with arthritis. The findings from the SR images are comparable with standard histopathology findings.  相似文献   

16.
射频爆磁压缩发生器作为一次性电磁脉冲产生和辐射的小型化装置,其辐射天线的结构和性能是其在实用化层面亟待突破的瓶颈。针对这一问题,深入研究了射频爆磁压缩发生器产生和辐射电磁脉冲的机理,并在此基础上,提出了一种适于实际需求的射频爆磁压缩发生器小型化共形天线。此共形天线设计成爆磁压缩发生器本体的一部分,在结构方面保证了该装置的小型化和实用性。CST仿真和实物测试结果表明,此共形天线在0.5 GHz到10.3 GHz的频带上具有良好的辐射特性,在辐射性能方面同样可以满足射频爆磁压缩发生器实用性的需求。  相似文献   

17.
A novel broadband tuning circuit composed of two low-current-density half-wave NbN/MgO/NbN tunnel junctions connected by a half-wave NbN/MgO/NbN microstrip line has been successfully tested in a quasi-optical mixer at frequencies above 700 GHz. The circuit had a designed center frequency of 870 GHz, was integrated in a center-fed twin-slot antenna, and was fed via a quarter-wave impedance transformer. Heterodyne measurments showed double-side-band receiver noise temperatures equivalent to 6-9 quanta from 675 to 810 GHz for a mixer with a current density of 6.7 kA/cm2. The RF bandwidth was broader than that of a conventional mixer using a full-wave junction with the same current density.  相似文献   

18.
We report on the fabrication of a transparent photostable cell circuit composed of drive and resistor diodes which are face‐to‐face connected to each other with different device area. The diodes consisted of e‐beam evaporated p‐NiO on sputter‐deposited n‐ZnO for p/n diode formation on indium‐tin‐oxide glass. Our transparent diodes show photostable rectifying behavior, about 103 on/off current ratio and even dynamic rectification at a maximum frequency of 100 Hz AC input signal in ambient light. The noticeable photo‐responsivity of the circuit was obtained only under ultraviolet (UV) light. We conclude that our transparent diode circuit is promising in enriching the field of transparent device electronics. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
采用一个混合模拟方法研究计算了不同频率高功率微波(HPM)辐照下含有PIN限幅器的PCB电路上的耦合信号。该混合模拟方法基于瞬态电磁拓扑和器件/电路混合模拟技术,实现了场、路、器件的混合模拟,能够模拟计算出HPM辐照下屏蔽腔内PCB电路上的耦合信号。用该方法研究计算了频率分别为1,1.25和2.5 GHz的HPM在PCB电路上的耦合信号。计算结果表明:当PCB电路无屏蔽腔时,1 GHz HPM的耦合信号最大,而PCB电路有屏蔽腔时,2.5 GHz HPM的耦合信号最大;PIN限幅器在耦合信号较大时具有较好的抑制作用。  相似文献   

20.
We investigated micron size, high-performance, and solenoid-type radio-frequency surface-mounted device (SMD) chip inductors with a low-loss Al2O3 core for a GHz drive microwave circuit application. Copper coils with a diameter of 27 μm were used and the chip inductors fabricated in this study are 0.86 × 0.46 × 0.45 mm3. The high-frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of the developed inductors were measured using a RF impedance/material analyzer (HP4291B with HP16193A test fixture). The developed inductors have a self-resonant frequency of 3.7–5.2 GHz and exhibit L of 15–34 nH. The inductors have Q of 38–49 over the frequency ranges of 900 MHz–1.7 GHz. The calculated data obtained from the equivalent circuit and the derived equation of Q described the high-frequency data of L, Q, and Z of the inductors developed quite well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号