首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MgZnO‐based ultraviolet avalanche photodetectors (APDs) have been fabricated from Au/MgO/Mg0.44Zn0.56O/MgO/Au Schottky structures. The carrier avalanche multiplication is realized via an impact ionization process occurring in the MgO layer under relatively large electric field. The APDs exhibit an avalanche gain of 587 at 31 V bias, and the response speed of the APDs is in the order of microseconds.

  相似文献   


2.
The crystallization process of mechanically alloyed Fe75Zr25 metallic glasses is investigated by means of both thermo‐magnetization and in situ neutron powder thermo‐diffraction experiments in the temperature range 300–1073 K. It was found that the crystallization takes place in a two‐step process, involving firstly the appearance of metastable Fe and Fe2Zr crystalline phases between 880 K and 980 K, and a subsequent polymorphic transformation into Fe3Zr above 980 K. These findings explain the anomalous magnetization vs. temperature behaviour on heating–cooling cycles.

  相似文献   


3.
The DC, RF and noise characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with different base layer widths and δ‐doped layer in the collector were investigated. Analysis of the RF and noise characteristics revealed that the high frequency noise of these HBTs is reduced due to cross‐correlation of shot noise sources and Coulomb blockade from accumulated charge. The measured noise performance is in a good agreement with the HICUM L2 compact model [M. Schroter, IEICE Trans. Electron. E88‐C , 1098 (2005)] when correlated shot noise sources with Fano factor for collector shot noise are included.

  相似文献   


4.
Interaction between negatively charged Nafion® and a positively charged polybenzimidazole‐decorated carbon nanotube leads to the formation of an ionic complex with high charge density for proton conduction, which can lead to an improvement in transport properties. Here we investigate the high‐temperature and low‐humidity proton conductivity of this nanocomposite membrane as a potential membrane for fuel cell applications.

  相似文献   


5.
Write‐once–read‐many‐times memory (WORM) devices were fabricated using Ti/Au and Au as top contacts on ZnO thin films on Si. Electrical characterization shows that both types of WORM devices have large resistance OFF/ON ratio (R ratio), small resistance distribution range, long retention and good endurance. WORM devices with Au top contact have better performance of higher R ratio because of a larger work function of Au compared to Ti.

  相似文献   


6.
We have shown that nitrophenyl groups may be added to the surface of few‐layer epitaxial graphene (EG) by the formation of covalent carbon–carbon bonds thereby changing the electronic structure and transport properties of EG from near‐metallic to semiconducting. In the present Letter we discuss the opportunities afforded by such chemical processes to engineer device functionality in graphene by modification of the electronic properties without physical patterning.

  相似文献   


7.
The properties of transition‐metal (V, Cr, Mn, Fe, Co, Ni) δ‐doped ZnO are reported based on ab‐initio electronic structure calculations where the on‐site electronic correlations are included using the Hubbard parameters. The calculated electronic and magnetic properties are considerably altered with respect to usual band‐structure calculations. Most of the studied systems are found to be either half‐metals or ferromagnetic/antiferromagnetic semiconductors and thus can be employed in a variety of spintronic applications as spin‐filter materials.

  相似文献   


8.
Rapid quantification of structural defects, especially dislocations, is desired for characterization of semiconductor materials. Herein, we outline and validate a low‐cost approach for dislocation‐density quantification in silicon, involving a high‐resolution commercial dark‐field imaging device, a flatbed scanner. This method requires minimal surface preparation and can be performed on as‐cut 15.6 × 15.6 cm2wafers in less than 5 minutes. The method has been tested at a spatial resolution down to 250 µm. At 1 mm resolution, the average root mean square of the normalized error was 0.39.

  相似文献   


9.
We demonstrate here a simple but very effective approach to decorate anodically grown TiO2 nanotubes (NTs) uniformly with CdS and PbS quantum dots (QDs) deep inside the NT walls. This approach is based on SILAR (successive ionic layer adsorption and reaction) technique assisted with evacuation of the NTs. The basic idea of evacuation is to remove air pockets trapped inside the NTs so as to clear the passage for the penetration of QD precursors down the bottom of the NTs.

  相似文献   


10.
We study graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition using optical microscopy, high resolution transmission electron microscopy and Raman spectroscopy. We find that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain‐sized few layer graphene. Hence we regard this as an interesting non‐metallic catalyst model system with the potential to explore graphene growth directly on a (high‐k) dielectric.

  相似文献   


11.
In this Letter we demonstrate that hydrogen‐terminated porous silicon (PSi) layers and powders can serve as highly efficient reductive templates for noble metal salts. The reduction results in metal nanoparticle (NP) formation in the pores of PSi. Gold NP formation has been monitored in‐situ by measuring the plasmon resonance response. Pt NPs, formed in the PSi matrix, were investigated by transmission electron microscopy and energy‐dispersive X‐ray analysis. Furthermore, hybrid Pt/PSi nanocomposites exhibit a high catalytic activity for CO oxidation.

  相似文献   


12.
Metallic single‐walled carbon nanotubes (m‐SWCNTs) with excellent conductivity and transparency are considered to be eminent electrode materials. However, it still remains a challenge to separate m‐SWCNTs by their diameters. As reported in this Letter, by effective purification treatment of SWCNTs, we succeeded in achieving diameter separation of m‐SWCNTs using gel column chromatography. TEM and Raman characterizations revealed that metal catalysts and amorphous carbon on tube surfaces were largely reduced, which contributed to the diameter separation of m‐SWCNTs.

  相似文献   


13.
We report on the photoconductance in two‐dimensional arrays of gold nanorods. The arrays are formed by a combination of droplet deposition and stamping methods. We find that the plasmon induced photoconductance is sensitive to the linear polarization of the exciting photons consistent with the excitation of the longitudinal surface plasmon resonance of the nanorods.

  相似文献   


14.
Polymer nanocomposites containing different concentrations of Au nanoparticles have been investigated by small angle X‐ray scattering and electronic absorption spectroscopy. The variation in the surface plasmon resonance (SPR) band of Au nanoparticles with concentration is described by a scaling law. The variation in the plasmon band of ReO3 nanoparticles embedded in polymers also follows a similar scaling law.

  相似文献   


15.
We discovered and characterized the χ (3)‐active Na3Li(SeO4)2·6H2O crystal with considerably high Raman gain coefficients for laser physics and nonlinear optics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


16.
We review the history of fully transparent oxide thin‐film transistors. Their performance and stability increased during the past ten years of their existence, thus enabling the design of novel applications in transparent electronics. However, certain disadvantages of the well established leading technology of metal–insulator–semiconductor field‐effect transistors (MISFETs), adapted from the silicon‐based complementary metal–oxide–semiconductor (CMOS) and thin‐film transistor technology, may be overcome by alternative transistor designs like metal–semiconductor field‐effect transistors (MESFETs). We compare the stability of published transparent MISFET with our transparent MESFET (TMESFET) technology against bias stress, towards illumination, at elevated temperatures and long‐term stability.

  相似文献   


17.
The possibility of multiferroicity arising from charge ordering in LuFe2O4 and structurally related rare earth ferrites is reviewed. Recent experimental work on macroscopic indications of ferroelectricity and microscopic determination of coupled spin and charge order indicates that this scenario does not hold. Understanding the origin of the experimentally observed charge and spin order will require further theoretical work. Other aspects of recent research in these materials, such as geometrical frustration effects, possible electric‐field‐induced transitions, or orbital order are also briefly treated.

  相似文献   


18.
Diffraction micro gratings have been written in ZnO:Al thin films using a picosecond laser operating at 355 nm. Micro gratings of 20 µm diameter with a period of 860 nm show a groove depth up to 120 nm. The total transmittance of square‐centimeter‐size grating‐textured ZnO:Al films was almost unchanged after grating formation, while the sheet resistance increased moderately. The textured films reached haze values of 9% at 700 nm. This simple texturing method can be applied also to ZnO:Al films that cannot be texture etched.

  相似文献   


19.
We propose a novel and complementary method for fabrication of flexible electronics. This method is not based on conventional printing using inks, but is based on the application of a toner‐based method such as Xerox or laser printing, followed by a lamination process. The lamination method is a solvent‐free and material‐saving process that simultaneously seals the devices, and the fabricated flexible devices have structural durability against bending. We have also shown that thermal lamination has an oriented growth effect, and the electrical characteristics of flexible organic field‐effect transistors did not degrade under a bending radius of 1 mm.

  相似文献   


20.
In this Letter, we report on a new nanofabrication technology to yield highly arrayed nanoelectrodes for organic–inorganic solar cells that promise new levels of performance and efficiency. This technology efficiently controls the effective area of highly arrayed nanoelectrodes and allows for the maximum incorporation of organic materials within the voids. Particularly the 3D parameters such as thickness, spacing, and height of the nanostructures are controlled non‐lithographically by atomic layer deposition technology.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号