首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Control of crystallization of a solution‐processed perovskite layer is of prime importance for high performance solar cells. In spite of the negative effect of water on perovskite solar energy conversion in several previous works, we observed that humidity plays a critical role to develop a thin uniform, dense perovskite film with preferred crystals, in particular, in a device with architecture of ITO/PEDOT:PSS/CH3NH3PbI3/ PC71BM/LiF/Al fabricated by two‐step sequential spin‐coating process. Humidity controlled spin‐coating of CH3NH3I on the pre‐formed PbI2 layer was the most influential process and systematic structural investigation as a function of humidity revealed that grains of CH3NH3PbI3 perovskite crystals increase in size with their preferred orientation while film surface becomes roughened as the humidity increases. The performance of a device was closely related to the humidity dependent film morphology and in 40% relative humidity, the device exhibited the maximum power conversion efficiency of approximately 12% more than 10 times greater than that of a device fabricated at 20% humidity. The results suggest that our process with controlled humidity can be another efficient route for high performance and reliable perovskite solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
3.
Three planar CH3NH3PbI3 (MAPbI3) solar cells having the same structure except a hole‐extraction layer (HEL) showed distinctive difference in operation characteristics. Analysis of frequency‐dependent capacitance and dielectric‐loss spectra of the three MAPbI3 devices showed two types of recombination‐loss channels with different time constants that we attributed respectively to interface and bulk defects. Discrepancy in defect formation among the three devices with a HEL of PEDOT:PSS, NiOx, or Cu‐doped NiOx was not surprising because grain‐size distribution and crystalline quality of MAPbI3 can be affected by surface energy and morphology of underlying HELs. We were able to quantify interface and bulk defects in these MAPbI3solar cells based on systematic and simultaneous simulations of capacitance and dielectric‐loss spectra, and current–voltage characteristics by using the device simulator SCAPS.

  相似文献   


4.
The excitons in the orthorhombic phase of the perovskite CH3NH3PbI3 are studied using the effective mass approximation. The electron–hole interaction is screened by a distance‐dependent dielectric function, as described by the Haken potential or the Pollmann–Büttner potential. The energy spectrum and the eigenfunctions are calculated for both cases. The results show that the Pollmann–Büttner model, using the corresponding parameters obtained from ab initio calculations, provides better agreement with the experimental results.

  相似文献   


5.
Modulated charge separation across (MO)/CH3NH3PbI3 and (MO)/PbI2/CH3NH3PbI3 (MO = TiO2, MoO3) interfaces was investigated by surface photovoltage (SPV) spectroscopy. Perovskite layers were deposited by solution‐based one‐step preparation and two‐step preparation methods. An unreacted PbI2 layer remained at the interface between the metal oxide and CH3NH3PbI3 for two‐step preparation. For the two‐step preparation on TiO2, the SPV signal related to absorption in CH3NH3PbI3 increased in comparison to the one‐step preparation due to electron transfer from CH3NH3PbI3 via PbI2 into TiO2 whereas the SPV signal related to defect transitions decreased. For the one‐step preparation on MoO3, holes photogenerated in CH3NH3PbI3 recombined with electrons in MoO3. In contrast, a hole transfer from CH3NH3PbI3 towards MoO3 was blocked by the PbI2 interlayer for the two‐step preparation on MoO3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
夏祥  刘喜哲 《物理学报》2015,64(3):38104-038104
利用具有钙钛矿结构的有机-无机杂化卤化物制备的太阳能电池, 由于具有溶液可加工性和高光电转换效率, 受到了广泛关注. 在目前报道的最高光电转换效率的器件中, 采用了CH3NH3PbI(3-x)Clx碘氯混合钙钛矿作为吸光层, 据报道在这种材料中光电子的扩散长度可以超过1 μm. 本文综述了在CH3NH3PbI(3-x)Clx方面现有的研究工作, 指出了薄膜制备条件的重要性, 并研究了CH3NH3I在PbCl2/CH3NH3I热解法制备CH3NH3PbI(3-x)Clx吸光层中的作用. 扫描电子显微镜研究表明CH3NH3I加入量为PbCl2的2倍到2.75倍时, CH3NH3I加入量的增加可以提高CH3NH3PbI(3-x)Clx吸光层的覆盖度和结晶度, CH3NH3I加入量进一步增加到3倍时, 形貌变化不大. X射线光电子能谱的数据证实了CH3NH3I加入量对覆盖度的影响, 并显示在CH3NH3I加入量大于PbCl2的2.5倍以后, CH3NH3PbI(3-x)Clx中氯的掺入量急剧下降. 光电测试表明器件性能随CH3NH3I加入量增加而增加, 在CH3NH3I/PbCl2为3/1时达到最高, 加入量略小于3/1对性能影响不大.  相似文献   

7.
In recent years, organic–inorganic lead halides attracted widespread interest, mainly due to their impressive photoconversion properties and low‐cost solution processing. In this study, we employed small amplitude transient photovoltage and photocurrent spectroscopy to investigate charge transport and recombination properties of perovskite CH3NH3PbI3–xClx solar cell under realistic light harvesting conditions (<1 sun). Cell structure resembles outlay commonly found in organic photovoltaics, with perovskite absorber being sandwiched between two thin layers of organic polymers. Tested device displayed high power conversion efficiency (10.3%), good fill factor and negligible hysteresis effect. Fundamental device parameters were characterized at various open‐circuit voltages (Voc) by examination of small voltage and current perturbations created by the low intensity pulsed laser excitations. The obtained results exhibit long charge carrier lifetimes and fast charge transport over the full range of applied optical bias, as well as remarkable diffusion lengths exceeding 1 μm. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
The results of the direct experimental evaluation of all elastic constants of single crystal hybrid organic–inorganic perovskite (HOIP) methylammonium lead bromide, a material known due to its possible solar‐energy, optoelectronics, X‐ray detector and thermoelectricity applications, are reported. The measurements of anisotropic elasticity of CH3NH3PbBr3by the technique of laser ultrasonics demonstrate that properties of HOIPs can be even more remarkable than the theoretical expectations: the extracted shear modulus is more than twice smaller, the universal anisotropy is more than twice higher, while the Debye temperature is more than 50° lower. Thus HOIPs can exhibit extremely low shear rigidity and extremely high anisotropy, both strongly overrunning the parameters which have been expected based on earlier first principles theoretical predictions. A simple theoretical model of granular crystal indicates that these observations could be related to the contributions of rotations/tilts of PbBr6octahedra to elastic response of cubic CH3NH3PbBr3. Another experimental observation is strong stiffening of shear rigidity with temperature increase from its room value up to 120 °C. Discovered elastic properties of HOIPs characterize them as exceptionally ductile/flexible/adaptive materials which could be deposited on corrugated/structured surfaces. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
杜会静  王韦超  朱键卓 《中国物理 B》2016,25(10):108802-108802
The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CH_3NH_3SnI_3 is a viable alternative to CH_3NH_3PbX_3,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CH_3NH_3SnI_3 based cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10~(16) cm~3) and the defect density(1 × 10~(15) cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the J_(sc) of 31.59 mA/cm~2,V_(oc) of 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CH_3NH_3SnI_3 PSC is a potential environmentally friendly solar cell with high efficiency.Improving the Sn~(2+) stability and reducing the defect density of CH_3NH_3SnI_3 are key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell.  相似文献   

10.
研究了聚乙烯吡络烷酮(PVP)作为添加剂对CH3NH3PbI3钙钛矿基太阳能电池光电性能的影响.通过SEM、XRD和UV-Vis等手段,研究了不同浓度PVP掺杂CH3NH3PbI3钙钛矿前驱体对薄膜的表面形貌、结晶度和光学性能的影响.结果表明,少量的PVP添加可以调控钙钛矿薄膜的质量,添加了PVP的钙钛矿薄膜的吸收性能明显得到提高,且吸收峰红移了20 nm;同时,不仅增加了CH3 NH3 PbI3的结晶度,而且还明显提高了钙钛矿薄膜的覆盖率,减少了钙钛矿薄膜中的针孔结构.在CH3 NH3 PbI3前驱体溶液中添加质量分数为1%的PVP,得到的钙钛矿太阳能电池的能量转换效率达到8.38%.与未加PVP的标准电池器件效率(1.30%)相比,效率提高了544%.这些结果表明,通过添加剂来调控一步法CH3 NH3 PbI3的晶体生长和薄膜形貌来获取高性能的钙钛矿太阳能电池是很有前途的.  相似文献   

11.
12.
In this study, we built a perovskite solar cells(PSCs) model with a Au/CuSCN/CH3NH3Sn1−xPbxI3/TiO2/FTO glass structure using the SCAPS program and use polynomial fitting to obtain the relationship between the conduction/valence bands of CH3NH3Sn1−xPbxI3 and the x value, which is more complex and accurate than that in any previous research. The influences of thickness, electron and hole mobilities, relative permittivity, effective conduction band density, effective valence band density, and the value of x on the solar cell performance are analyzed. Furthermore, we simulate the situation where the doping concentration changes with the absorption layer depth of the device and a special bandgap is formed. The power conversion efficiency of the device improves from 19.96% to 20.52%, with an open-circuit voltage of 0.776 V, a short-circuit current of 33.79 mA/cm2, and a filling factor of 77.39% when double gradient doping is performed. The application value of gradient doping in the device absorption layer is obtained.  相似文献   

13.
Hybrid perovskite solar cell is a fast‐growing photovoltaic technology. Here, we present a method based on the closed space vapor transport deposition, which has the potential for large‐scale production due to its low cost, high throughput, and large‐area uniformity. We demonstrate CH3NH3PbI3 solar cells with high power conversion efficiencies of 16.2%. Furthermore, the large area devices have high efficiency of 13.8% and good uniformity in a large substrate of 3 cm × 3 cm. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Spin coated perovskite thin films are known to have an issue of pinholes & poor morphology control which lead to poor device-to-device repeatability, that is an impediment to scale-up. In this work, Methylamine vapor annealing process is demonstrated which consistently leads to high-quality perovskite thin-films with an average grain-size of 10–15 μm. The improvement in film morphology enables improvement in effective carrier recombination lifetime, from 21 μs in as-deposited films to 54 μs in vapor-annealed films. The annealed films with large-grains are also more stable in ambient conditions. Devices made on annealed perovskite films are very consistent, with a standard deviation of only 0.7%. Methylamine vapor annealing process is a promising method of depositing large-grain CH3NH3PbI3 films with high recombination lifetime and the devices with improved performance.  相似文献   

15.
We report on the fabrication of efficient annealing-free organic solar cells using co-solvent solution considered as a promising method for low-cost and time-saving manufacturing. Higher device efficiency could be obtained compared to the pure solvent casted device, resulting from the improved crystallinity, optical absorption and transport properties. The power conversion efficiency of 2.8% was obtained, demonstrating the feasibility of achieving low-cost and high-efficiency organic solar cells without any additional treatment and processing additives.  相似文献   

16.
The efficiency of a photovoltaic cell is directly proportional to its open circuit voltage. This in turn is eventually set by the donor‐acceptor energy gap, i.e. the energy of the intermolecular charge‐transfer state in organic solar cells. In this letter we study diindenoperylene (DIP) as a new molecular acceptor. We show that planar heterojunctions of thiophene derivatives and DIP yield extraordinarily high open circuit voltages (Voc) of approximately 1.2 V for poly(3‐hexylthiophene) and almost 1.4 V for heat treated α‐sexithiophene. Those values are close to the maximum Voc attainable for these material systems.

  相似文献   


17.
In a TiO2–perovskite heterojunction solar cell (TiO2–PHSC), besides the perovskite CH3NH3PbX3, TiO2 as one side of the TiO2/CH3NH3PbX3 heterojunction also plays an important role in the photovoltaic effect. In order to improve the performance of the TiO2–PHSC with the structure of glass/FTO/compact TiO2/mesoporous TiO2/CH3NH3PbI3–xClx /poly‐TPD (poly(N,N ′‐bis(4‐butylphenyl)‐N,N ′‐bis(phenyl)benzidine))/Au, a 2 nanometer thick Cs2CO3 layer is thermally evaporated on the mesoporous TiO2 layer. The short‐circuit current density (Jsc) raises from 17.7 mA cm–2 to 18.9 mA cm–2, the open‐circuit voltage (Voc) from 0.81 V to 0.87 V, and the fill factor (FF) from 55.2% to 67.3%; as a result, the power conservation efficiency (PCE) increases from 8.0% to 11.1% under AM 1.5G solar illumination (100 mW cm–2). Moreover, in a TiO2–PHSC free of mesoporous TiO2, where Cs2CO3 is evaporated on the compact TiO2 layer, the Jsc, Voc, FF and PCE values increase from 16.0 mA cm–2, 0.83 V, 50.8% and 6.7% to 17.9 mA cm–2, 0.90 V, 59.3%, and 9.5%, respectively. The reasons of the PCE increase for either the first kind of TiO2–PHSC or the mesoporous‐TiO2‐free TiO2–PHSC with a nanometer‐thick Cs2CO3 layer on mesoporous TiO2 or compact TiO2 are discussed. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

18.
In this study, metal‐assisted etching (MAE) with nitric acid (HNO3) as a hole injecting agent has been employed to texture multi‐crystalline silicon wafers. It was previously proven that addition of HNO3 enabled control of surface texturing so as to form nano‐cone shaped structures rather than nanowires. The process parameters optimized for optically efficient texturing have been applied to multi‐crystalline wafers. Fabrication of p‐type Al:BSF cells have been carried out on textured samples with thermal SiO2/PECVD‐SiNx stack passivation and screen printed metallization. Firing process has been optimized in order to obtain the best contact formation. Finally, jsc enhancement of 0.9 mA/cm2 and 0.6% absolute increase in the efficiency have been achieved. This proves that the optimized MAE texture process can be successfully used in multi‐crystalline wafer texturing with standard passivation methods.

JV curves and SEM images of the nano and iso‐textured samples. jsc enhancement of 0.9 mA/cm2 together with 0.6% absolute efficiency gain was observed on nano‐textured samples.  相似文献   


19.
采用一种新的阳极材料:银、铜、镍的复合金属网格阳极,利用旋涂法制成了活性层为P3HT (poly(3-hexylthiophene)):PCBM([6,6]-phenylC61-butyricacidmethylester)的柔性衬底聚合物太阳能电池.制备了5种不同结构的柔性聚合物太阳能电池器件,将采用新型阳极材料的柔性衬底聚合物太阳能电池与传统ITO(Indium tin oxide)阳极的柔性衬底聚合物太阳能电池进行对比,发现新型阳极材料所制成的器件性能得到大幅度的提高,其电池器件在50 mW/cm~2强度光照下,开路电压(V_(oc))为0.54 V,短路电流密度(J_(sc))为5.39 mA/cm~2,能量转换效率为2.060%.  相似文献   

20.
Qiaopeng Cui 《中国物理 B》2022,31(3):38801-038801
Perovskite solar cells (PSCs) are the most promising commercial photoelectric conversion technology in the future. The planar p-i-n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability. However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-level-matched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO$_{x}$/Sr:NiO$_{x}$ bilayer hole transport layer (HTL) improves the holes transmission of NiO$_{x}$ based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves $J_{\rm sc}$. As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 mA$\cdot$cm$^{-2}$ and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号