首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on solution processable organic field effect transistors prepared using a poly(3‐hexylthiophene)–ZnO nanoparticles composite as channel semiconductor material and cross‐linked polyvinyl alcohol as gate insulator. Our transistors show a field effect mobility of 0.35 ± 0.06 cm2/V s, threshold voltage of –1.30 ± 0.11 V, and Ion/Ioff ratio of (1.0 ± 0.1) × 103. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
刘玉荣  陈伟  廖荣 《物理学报》2010,59(11):8088-8092
以高掺杂Si单晶片作为衬底且充当栅电极,采用磁控溅射法在硅片上沉积HfTiO薄膜作为栅介质层,聚三己基噻吩(P3HT)薄膜作为半导体活性层,金属Au作为源、漏电极,并采用十八烷基三氯硅烷(OTS)对栅介质层表面修饰,在空气环境下成功地制备出聚合物薄膜晶体管(PTFT).PTFT器件测试结果表明,该晶体管在低的驱动电压(<-1 V)下仍呈现出良好的饱和行为,其阈值电压和有效场效应迁移率分别为0.4 V和2.2×10-2 cm2/V ·s.通过对金属-聚合物-氧化物 关键词: 聚合物薄膜晶体管 聚三己基噻吩 场效应迁移率 k栅介质')" href="#">高k栅介质  相似文献   

3.
We report on the reliability of Inx Al1–xN/AlN/GaN‐based heterostructure field‐effect transistors (HFETs) fabricated on five different wafers with varying indium compositions (0.12 ≤ x ≤ 0.20) encompassing the tensile/compressive strain fields. All of the tested devices underwent high field on‐state stress at 20 V DC drain bias and zero gate bias for five hours. We monitored the drain current and low‐frequency noise (LFN) a priori and a posteriori the stress treatment to quantify device degradation. HFETs suffering tensile strain showed remarkably large degradation which manifested itself with up to 25 dB increase in noise power and up to 72% loss of drain current after stress. On the other hand, devices fabricated on compressively strained structures remained intact after stress, but they had about 30 dB higher pre‐stress noise‐power levels and about 50% lower drain‐current densities to begin with. The results show that the nearly lattice‐matched In0.17Al0.83N barrier exhibited very low degradation along with current density remaining high compared with the devices having barriers with lower or higher indium content. Our results suggest that the nearly‐lattice‐matched InAlN can be a good candidate for devices due to its relatively better reliability while maintaining a high current density. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this work, poly(3‐octylthiophene) (P3OT) films were synthesized electrochemically in non‐aqueous media through the oxidation of the monomer, (3‐octylthiophene), using a standard three‐electrode cell in acetonitrile with 0.05 mol L?1 LiClO4 or 0.05 mol L?1 Et4NBF4. The polymeric films were deposited on fluorine tin oxide (FTO). The partial dedoping was obtained in NH4OH solution, providing a good chemical stability of the formed material. The films obtained through this method have been characterized by Fourier‐transform infrared spectroscopy (FT‐IR), electron paramagnetic resonance (EPR), UV–Vis absorption, and photoluminescence (PL) spectroscopy. The FT‐IR and EPR spectra together gave the results that led to characterization of two structures (pristine and non‐pristine forms of thiophene rings) while forming the P3OT polymer chain. These results were associated with the stabilization of pristine chains and mixed chains (non‐pristine structures) in the polymeric film. Their bands in the PL spectra are wide and asymmetric and their adjustments by Gaussian functions was necessary; this was the main indication that there are two distinct contributions to the emission spectra. These two contributions are attributed to the emission by mixed chains (Gaussian centered at higher energy) and by pristine chains (Gaussian of lower energy) present in the formed polymeric material. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The mobility enhancement of organic thin‐film transistors based on poly(3‐hexylthiophene) (P3HT) by incorporating gold nanorods (Au NRs) is reported. Through varying the doping concentration and surface modifier of the Au NRs in P3HT matrix, the P3HT/Au composite with 0.5 mg mL?1 pyridine‐capped Au NRs exhibits a hole mobility of 0.059 cm2 V?1 s?1, this value is seven times higher than that of pristine P3HT. This remarkable improvement of mobility originates from the enhanced crystallinity and optimized orientation of P3HT after doping with Au NRs. In addition, the appropriate surface modification can produce more‐efficient hole conduction of Au NRs.  相似文献   

6.
Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+-Si) as gate electrode exhibited reasonable field effect mobilities. To deal with poor stability and large leakage currents between source/drain and gate electrodes in these devices, isolated OTFTs with reduced source/drain contact area were fabricated by selective deposition of pentacene on SiO2/PMMA through shadow mask. This led to almost negligible leakage currents and no degradation in electrical performance even after 14 days of storage under ambient conditions. But, the field effect mobilities obtained were lower than 10−3 cm2 V−1 s−1, whereas by using PMMA as gate dielectric with chromium deposited on the polished side of n+-Si as gate electrode, improved field effect mobilities (>0.02 cm2 V−1 s−1) were obtained. PMMA-based OTFTs also exhibited lower leakage currents and reproducible output characteristics even after 30 days of storage under ambient conditions.   相似文献   

7.
田雪雁  赵谡玲  徐征  姚江峰  张福俊  徐叙瑢 《物理学报》2011,60(3):37201-037201
为了保证在低温加工及溶液制备的情况下,能够提升高度区域规则的聚(3-己基噻吩) (RR-P3HT)有机场效应晶体管(OFET)的器件性能,本文研究了室温下乙醇及乙腈非溶剂的掺杂,及其对高分子自组织机理与导致的RR-P3HT OFET电学性能的影响.实验发现,适量进行乙醇及乙腈非溶剂的掺杂,将促进RR-P3HT薄膜形成更多期望的微晶粒薄片结构,完善高分子自组织机理,导致RR-P3HT OFET电学性能的提升.实验表明,在RR-P3HT溶液中进行5 %乙腈添加后,其器件场效应迁移率的值由原来的4.04×10< 关键词: 高度区域规则的聚(3-己基噻吩)有机场效应晶体管 非溶剂掺杂 自组织机理 场效应迁移率  相似文献   

8.
One important figure of merit for the commercial usability of organic transistors (OFETs) is their electrical stability. With the aim of identifying the microscopic location of degradation sites within a transistor channel, we have investigated the bias stress stability of OFETs by electrical measurements as well as by conductive atomic force microscopy. Air‐stable n‐channel FETs based on a N,N′‐bis(2‐ethylhexyl)‐1,7(1,6)‐dicyano‐perylene[3,4:9,10]bis (dicarboximide) were fabricated to understand the relation between the thin‐film morphology, the substrate temperature during the vacuum de position with the aim to fabricate transistors with a mobility not dominated by interface traps. The devices showed a maximum carrier mobility of (0.12 ± 0.01) cm2/V s and an on/off ratio up to 107. The electrical performance as well as the bias stress behavior of the semiconductor thin‐films is significantly influenced by grain boundaries. For example, the grain boundary resistance was found to increase upon electrical stress by more than 150% (from 2 ± 0.2 GΩ to 5 ± 1.5 GΩ), while the resistance within the grains remains unchanged. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
We studied various aspects relating to surface charge‐transfer‐induced doping at an organic/organic interface using in situ electrical measurements with a field‐effect transistor (FET) during the formation of the electron donor/acceptor interface. Adsorption of the electron‐accepting molecules (C60) on top of the electron donating molecules (α‐6T) led to an increase in the FET hole mobility in an α‐6T film. Under illumination, the FET hole mobility in the α‐6T film with C60 deposition was significantly increased in comparison with that in the dark due to exciton dissociation at the C60/α‐6T interface, resulting in a large threshold voltage shift. The origin of the mobility increase is explained by the multiple trapping and release (MTR) model in which the mobility is determined by the carrier density. Various phenomena relevant to charge transfer and charge transport at the organic/organic interface are reported and their origins are discussed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The aminolysis reaction of a series of β‐lactams in the presence of poly(ethyleneimine) (PEI) at 30°C and pH = 8.40 has been studied. The substrates investigated follow a pseudo first order rate, except two β‐lactams which show a two step consecutive reaction. Increasing the polyelectrolyte concentration, Michaelis–Menten type kinetics are been observed and for four substrates a more complex rate behaviour was verified owing to the polyelectrolyte inhibition effect. Both the binding constant K1 between polyelelectrolyte and β‐lactam and the first order rate constant of the reactive complex decomposition kcat were calculated. The substituent effect at C‐6′ or C‐7′ position of β‐lactam on the aminolysis rate does not correlate with the σI value (Taft plot). Most probably, steric and electronic effects are important, but the electrostatic ones are determining factors for the relevant acceleration attributable to both the binding phenomena and the increased reactivity of the substrate–polyelectrolyte complex. The comparison between poly(ethyleneimine) and Human Serum Albumin (HSA) is also discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5~wt% to 2~wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2~wt% can reach 5.78× 10^-3~cm2/Vs which is higher by a factor of 13 than that with 0.5~wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09~cm2/Vs by thermal annealing at 150~℃, and the value of on/off current ratio can reach 10^4.  相似文献   

12.
13.
In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17×10^ - 2~m2/(V.s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150~℃ for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00×10^ - 2 ~cm2/(V.s).  相似文献   

14.
The electrical stability of molybdenum disulfide (MoS2) transistors is crucial for their use in various applications. However, it is tricky to evaluate the inherent stability of MoS2 transistors because it is highly dependent on environmental conditions during measurement such as humidity, light, and electrical factors. We studied the threshold voltage instability under negative bias stress at a variety of temperatures in a vacuum and in the dark to eliminate any environmental effects. In particular, the measurement of transfer curves under stress is minimized in order to study the inherent instability of MoS2 transistors, even though the measurement of transfer curves is normally indispensable to check for the evolution of electrical instability. MoS2 transistors have high average effective energy when compared to conventional amorphous Si and oxide semiconductor transistors, which allows for adequate operation at high temperatures. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
16.
The Raman and Infrared (IR) spectra of poly(methyl methacrylate) (PMMA) membranes plasticized by ionic liquids of the (1 − x)[1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)],xLiTFSI type, where BMI+ is the 1‐butyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, are analyzed for a lithium bis(trifluoromethane sulfone)imide (LiTFSI) mole fraction x = 0.23 and PMMA contents from 0 to 50 wt%. The lithium is found to have an average coordination of about three CO groups and less than one TFSI anion. It plays the role of a cross‐linker between the ester groups of PMMA and the nonvolatile ionic liquid. Addition of PMMA to the (1 − x)(BMITFSI),xLiTFSI ionic liquid lowers the conductivity but might improve the lithium transference number by transforming the [Li(TFSI)2] anionic clusters present in the pure ionic liquid into a mixed coordination by ester groups and TFSI anions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A high‐voltage rectangular pulse was applied to the electro‐spray deposition (ESD) to control the evaporation‐induced self‐assembly of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT). Two groups of P3HT thin films were deposited by a series of high‐voltage rectangular pulses. Compared with the ESD driven by a constant voltage, the pulse‐driven ESD enables to probe the effect of solvent evaporation on the self‐assembly of P3HT molecules. The droplet size and the evaporation of residual solvent in the droplet determine the film morphology. Ultraviolet–visible absorption spectroscopy was used to identify the ordering of P3HT molecules in the films. The self‐assembly of P3HT molecules took place during the solvent evaporation which can be controlled by a combination of the pulse amplitude and the pulse interval. With an appropriate combination of the amplitude and the interval, the ESD produced a P3HT thin film with high chain ordering.

  相似文献   


18.
《Composite Interfaces》2013,20(8):475-488
The polyaniline (PANI) is a widely studied conducting polymer due to its application in several devices such as biosensor, gas sensor etc. Known methods to produce PANI composites may be essentially reduced to two distinct groups: synthetic methods based on aniline polymerization in the presence of or inside a matrix polymer, and blending methods to mix a previously prepared PANI with a matrix polymer. Poly (aniline-co-butyl 3-aminobenzoate) (ANI-co-BAB) and poly (aniline-co-ethyl 3-aminobenzoate) (ANI-co-EAB) are prepared as conducting copolymers in nanoscale by chemical oxidation method under ultrasonic irradiation. The different molar ratio of aniline to butyl 3-aminobenzoate and ethyl 3-aminobenzoate are used in the preparation of copolymers. Conductive nanocomposites based on ANI-co-BAB or ANI-co-EAB with poly (styrene-alt-maleic acid) (PSMAC), and polystyrene are prepared by solution blending method. The obtained conductive composites formed films with good homogeneity and flexibility. The conductivity of the obtained nanocomposites is measured with a four-probe method. The electrical conductivity of the composites (ANI-co-EAB)/PSMAC/PS and (ANI-co-BAB)/PSMAC/PS are 24?×?10?5?S?cm?1 and 31?×?10?5?S?cm, respectively. Our results show that the (ANI-co-BAB)/PSMAC/PS composite has more conductivity than (ANI-co-EAB)/PSMAC/PS composite. The copolymers and composites in nanoscale are characterized by FT-IR and 1H NMR spectral data. The surface morphology was studied using SEM analysis. Also, their grain size is measured using XRD studies.  相似文献   

19.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
For calcite (CaCO3), one of the pioneer crystals in nonlinear optics, new results of stimulated Raman scattering (SRS) spectroscopy are presented. Among them are the discovery of a new SRS‐promoting vibration mode with ωSRS2 ≈︁ 282 cm‐1 and its participation, together with the main SRS mode ωSRS1 ≈︁ 1086.5 cm‐1, in cross‐cascaded (χ(3) ↔ χ(3)) nonlinear‐lasing generation, as well as the observation of efficient self‐upconversion via cascaded parametric four‐wave processes of one‐micron Stokes and anti‐Stokes χ(3)‐lasing into the UV‐region of third harmonic generation. The investigations show that calcite is able to generate a χ(3)‐lasing comb of more than two octaves bandwidth. The article also gives a brief review on the discovery and study of the SRS‐effect in natural crystals (minerals), which have expanded our ability to study the photon‐phonon nonlinear‐laser interactions in crystalline materials. A short summary of information about χ(3)‐lasing properties of the triangular planar structure units in SRS‐active crystals is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号