首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of antimony (Sb) doping on solution‐processed indium oxide (InOx) thin film transistors (TFTs) were examined. The Sb‐doped InSbO TFT exhibited a high mobility, low gate swing, threshold voltage, and high ION/OFF ratio of 4.6 cm2/V s, 0.29 V/decade, 1.9 V, and 3 × 107, respectively. The gate bias and photobias stability of the InSbO TFTs were also improved by Sb doping compared to those of InOx TFTs. This improvement was attributed to the reduction of oxygen‐related defects and/or the existence of the lone‐pair s‐electron of Sb3+ in amorphous InSbO films. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
氮化硅纳米薄膜非平衡热导率实验研究   总被引:1,自引:1,他引:0  
3ω实验方法是一种可以对薄膜热导率进行瞬时测量的方法。根据3ω方法测试原理,搭建了薄膜导热系数测试平台,并且分别测试低频率段和高频段薄膜与基底的温升以及薄膜热导率。测试结果表明:Si3N4薄膜的热导率随温度的升高而增大;高频段下,热导率受频率影响大,误差大;在低频段下薄膜热导率与频率变化基本无关;基于电子与声子的局部热平衡运输方程假设,S i3N4薄膜的热导率具有极度非平衡性;通过比较电阻、热导率与温度的关系可以看出加热器的尺寸大小会影响薄膜的热导率,最佳加热器的宽度选用20μm左右。  相似文献   

3.
A wealth of studies have confirmed that the low‐field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro‐mechanism. Recently, HfO2 thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub‐coercive polarization reversal properties were investigated for 10 nm thick Si‐doped HfO2 thin films. The applicability of the Rayleigh law to ultra‐thin ferroelectric films was first confirmed, indicating the existence of a multi‐domain structure. Since the grain size is about 20–30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
We demonstrate the fabrication of a solid state heterojunction photovoltaic device with solution‐processed graphene oxide (GO) and n‐Si. Partially reduced GO with a high optical gap (2.8 eV) was spin‐coated on the n‐Si substrate and a heterojunction device was fabricated with the structure of Au/pr‐GO/n‐Si. In the fabricated device, incident light was transmitted through the thin GO film to reach the junction interface, generating photoexciton, and thereby a photovoltaic action was observed. By means of a built‐in electric potential at the GO/n‐Si junction, photoexcited electrons and holes can be separated, transported and collected at the electrodes.

  相似文献   


5.
Transparent conductive oxide thin films have been widely investigated in photoelectric devices such as flat panel display (FPD) and solar cells. Al-doped zinc oxide (AZO) thin films have been widely employed in FPD. Measuring the surface roughness of AZO thin films is important before the manufacturing of photoelectric device using AZO thin films because surface roughness of AZO thin films will significantly affect the performance of photoelectric device. Traditional methods to measure surface roughness of AZO thin films are scanning electron microscopy and atomic force microscopy. The disadvantages of these approaches include long lead time and slow measurement speed. To solve this problem, an optical inspection system for rapid measurement of the surface roughness of AZO thin films is developed in this study. It is found that the incident angle of 60° is a good candidate to measure the surface roughness of AZO thin films. Based on the trend equation y=−3.6483x+2.1409, the surface roughness of AZO thin films (y) can be directly deduced from the peak power density (x) using the optical inspection system developed. The maximum measurement-error rate of the optical inspection system developed is less than 8.7%.The saving in inspection time of the surface roughness of AZO thin films is up to 83%.  相似文献   

6.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

7.
利用固相反应法制备了富铟含量在不同成分配比下的高质量InGaZnO陶瓷靶材,采用脉冲激光沉积法,在基片温度为20 ℃、氧压为1 Pa条件下,在石英玻璃衬底上生长了非晶InGaZnO薄膜,并对薄膜进行X射线衍射、透射吸收光谱、拉曼光谱与霍尔效应测试。通过对InGaZnO薄膜的测试表征,在较低温度条件下,铟含量较高的薄膜样品保持了非晶结构、可见光的高透明性和高电子迁移率,InGaZnO薄膜有望应用于电子器件。  相似文献   

8.
ZnO:Al thin films with a low electrical resistivity were grown by magnetron sputtering on sapphire substrates. The cross‐plane thermal conductivity (κ = 4.5 ± 1.3 W/mK) at room temperature is almost one order of magnitude lower than for bulk materials. The thermoelectric figure of merit ZT at elevated temperatures was estimated from in‐plane power factor and the cross‐plane thermal conductivity at room temperature. It is expected that the thermal conductivity drops with increasing temperature and is lower in‐plane than cross‐plane. Consequently, the thin film ZT is at least three times higher than for bulk samples at intermediate temperatures. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
路忠林  邹文琴  徐明祥  张凤鸣 《中国物理 B》2010,19(5):56101-056101
This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn6110M, 7550P, 7280E, 7870Dhttp://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/056101https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111756Co-doped ZnO, diluted magnetic semiconductors, x-ray absorption fine structure, single crystalline thin filmsProject partially supported by National Science Foundation of China (Grant No.~10804017), National Science Foundation of Jiangsu Province of China (Grant No.~BK2007118), Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070286037), Cyanine-Project Foundation of Jiangsu Province of China (Grant No.~1107020060), Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No.~1107020070) and New Century Excellent Talents in University (NCET-05-0452).This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn$_{0.95}$Co$_{0.05}$O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65~$\mu _{\rm B}$/Co$^{2 + })$ at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.Co-doped;ZnO;diluted;magnetic;semiconductors;x-ray;absorption;fine;structure;single;crystalline;thin;filmsThis paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy.The as-grown films show high resistivity and non-ferromagnetism at room temperature,while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour.The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase.Compared with weak ferromagnetism(0.16 μB/Co2+) in the Zn0.95Co0.05O single crystalline film with reducing annealing in the absence of Zn vapour,the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism(0.65 μB/Co2+) at room temperature.This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films,and the corresponding ferromagnetic mechanism is discussed.  相似文献   

10.
Thin film transistors (TFTs) with zirconium‐doped indium oxide (ZrInO) channel layer were successfully fabricated on a flexible PEN substrate with process temperature of only 150 °C. The flexible ZrInO TFT exhibited excellent electrical performance with a saturation mobility of as high as 22.6 cm2 V–1 s–1, a sub‐threshold swing of 0.39 V/decade and an on/off current ratio of 2.5 × 107. The threshold voltage shifts were 1.89 V and ?1.56 V for the unpassivated flexible ZrInO TFT under positive and negative gate bias stress, respectively. In addition, the flexible ZrInO TFT was able to maintain the relatively stable performance at bending curvatures larger than 20 mm, but the off current increased apparently after bent at 10 mm. Detailed studies showed that Zr had an effect of suppress the free carrier generation without seriously distorting the In2O3 lattice. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
A dual plasmonic resonance effect on the performance of poly(3‐hexylthiophene) (P3HT):phenyl C61‐butyricacid methyl ester (PC61BM) based polymer solar cells (PSCs) has been demonstrated by selectively incorporating 25 nm colloidal gold nanoparticles (Au NPs) in a solution‐processed molybdenum oxide (MoO3) anode buffer layer and 5 nm colloidal Au NPs in the active P3HT:PCBM layer. The devices exhibit up to ~20% improvement in power conversion efficiency which is attributed to the dual effect of localized surface plasmon resonance (LSPR) of Au NPs with enhanced light absorption and exciton generation. Our report shows a guideline on the usage of dual LSPR effect for the solution‐processed polymer solar cells to achieve high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Diffraction micro gratings have been written in ZnO:Al thin films using a picosecond laser operating at 355 nm. Micro gratings of 20 µm diameter with a period of 860 nm show a groove depth up to 120 nm. The total transmittance of square‐centimeter‐size grating‐textured ZnO:Al films was almost unchanged after grating formation, while the sheet resistance increased moderately. The textured films reached haze values of 9% at 700 nm. This simple texturing method can be applied also to ZnO:Al films that cannot be texture etched.

  相似文献   


13.
Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature.  相似文献   

14.
Thin films of antimony sulfide‐selenide solid solutions (Sb2Sx Se3–x) were prepared by chemical bath deposition and thermal evaporation to constitute solar cells of a transparent conductive oxide (FTO)/CdS/Sb2Sx Se3–x/C–Ag. The cell parameters vary depending on the sulfide‐selenide composition in the films. The best solar cell efficiency of 3.6% was obtained with a solid solution Sb2S1.5Se1.5 prepared by thermal evaporation of the precipitate for which the open circuit voltage is 0.52 V and short circuit current density, 15.7 mA/cm2under AM 1.5G (1000 W/m2) solar radiation. For all‐chemically deposited solar cells of Sb2S1.1Se1.9 absorber, these values are: 2.7%, 0.44 V, and 15.8 mA/cm2, and for Sb2S0.8Se2.2, they are: 2.5%, 0.38 V and 18 mA/cm2. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
This study investigates how polarity inversion influences the relationship between the electrical properties of heavily Ga‐doped ZnO (GZO) films deposited by RF magnetron sputtering and their thickness. The electrical properties observed in very thin films are correlated with a change of polarity from O‐polar to Zn‐polar face upon increasing the film thickness based on results of valence band spectra measured by X‐ray photoelectron spectroscopy. It is found that the electrical properties of very thin GZO films deposited on Zn‐polar ZnO templates are significantly improved compared to those deposited on O‐polar face. A low resistivity of 2.62 × 10–4 Ω cm, high Hall mobility of 26.9 cm2/V s, and high carrier concentration of 8.87 × 1020 cm–3 being achieved with 30 nm‐thick GZO films using Zn‐polar ZnO templates on a glass substrate. In contrast, the resistivity of 30 nm‐thick GZO films on bare glass that shows more likely O‐polar is very poor about 1.44 × 10–3 Ω cm with mobility and carrier concentration are only 11.9 cm2/V s and 3.64 × 1020 cm–3, respectively. It is therefore proposed that polarity inversion plays an important role in determining the electrical properties of extremely thin GZO films. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
Thin amorphous tantalum films are prepared on Si(111) substrates in a metallic glassy state. The amorphous monoatomic state of the film is characterized by X‐ray diffraction studies. The glassy state leads to a negative t emperature c oefficient of the r esistivity (TCR) for low sample temperatures <200 K which is attributed to incipient localization. Above 200 K a positive TCR is observed as expected for a normal Boltzmann transport regime. Upon heating the Si substrate to 1200 K TaSi2 is formed out of the amorphous tantalum film and the silicon substrate. The TaSi2 layer is crystalline as evident from X‐ray diffraction data.

  相似文献   


17.
18.
氢稀释对高速生长纳米晶硅薄膜晶化特性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
以SiH4与H2为气源,采用射频等离子体增强化学气相沉积技术,在较高的压强(230Pa)下,研究氢稀释率对纳米晶硅薄膜的生长速率和晶化特性的影响. 实验表明,薄膜的晶化率,晶粒尺寸随着氢稀释率的提高而增加,当氢稀释率为99%,薄膜的晶化率接近70%. 而沉积速率却随着氢稀释率的减小而增加,当氢稀释率从99%减小到95%时,薄膜的沉积速率由0.3nm/s 增加至0.8nm/s. 关键词: 纳米晶硅薄膜 氢稀释 晶化率 硅烷  相似文献   

19.
n型有序多孔硅基氧化钨室温气敏性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
胡明  刘青林  贾丁立  李明达 《物理学报》2013,62(5):57102-057102
利用电化学腐蚀方法制备了n型有序多孔硅, 并以此为基底用直流磁控溅射法在其表面溅射不同厚度的氧化钨薄膜. 利用X射线和扫描电子显微镜表征了材料的成分和结构, 结果表明, 多孔硅的孔呈柱形有序分布, 溅射10 min的WO3薄膜是多晶结构, 比较松散地覆盖在整个多孔硅的表面. 分别测试了多孔硅和多孔硅基氧化钨在室温条件下对二氧化氮的气敏性能, 结果表明, 相对于多孔硅, 多孔硅基氧化钨薄膜对二氧化氮的气敏性能显著提高. 对多孔硅基氧化钨复合结构的气敏机理分析认为, 多孔硅和氧化钨薄膜复合形成的异质结对良好的气敏性能起到主要作用, 氧化钨薄膜表面出现了反型层引起了气敏响应时电阻的异常变化. 关键词: 有序多孔硅 氧化钨薄膜 二氧化氮 室温气敏性能  相似文献   

20.
We investigate the characteristics of intra‐grain and grain boundary defects in polycrystalline Si films, by employing quantitative electron paramagnetic resonance measurements on liquid phase crystallized layers with an average grain size of 200 µm and tailored solid phase crystallized Si layers with similar intra‐grain morphology but systematically varied grain sizes between 0.25 µm and 1 µm. The defect characteristics are found to be composed of two distinctive g ‐values of g = 2.0055 and 2.0032, which are attributed to grain boundary defects and intra‐grain defects, respectively. Additional hydrogenation leads to a reduction of the overall defect concentration, while a rapid thermal annealing process primarily heals intra‐grain defects.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号