首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report room temperature measurements of X‐ray diffraction (XRD), optical transmission microscopy (OTM), atomic force microscopy (AFM), infrared‐absorption (IR), and micro‐Raman spectroscopy (µ‐RS) of the oriented SAT0.3: LA0.075: CAT0.625 single crystal. The final structure refinement of SAT0.3: LA0.075: CAT0.625 crystal was performed for I4/m space group at room temperature. Vibrational spectra of the crystal were discussed in terms of group‐theoretical predictions for untilted (Fm3 m) and tilted tetragonal (I4/m) perovskite structure. The confocal µ‐Raman measurements of depth profiling of SAT0.3: LA0.075: CAT0.625 crystal suggest a relationship between sensitivities of the ordering‐related Raman‐active modes and the variation of order parameter η. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Using the electronic spectroscopy method, the laser-conoscopy method, and the Raman light-scattering method, we have studied the structural homogeneity of LiNbO3 crystals doped with 0.03–4.5 mol % of ZnO. We have found that, as the laser radiation power is increased to 90 mW, the conoscopic patterns of crystals show additional distortions, which are attributed to the manifestation of the photorefractive effect. For the LiNbO3 crystal doped with 4.5 mol % of ZnO, in which the photorefractive effect is low, we have revealed a considerable shift (compared to the remaining crystals) of the optical absorption edge toward the shortwavelength range, which indicates a high structural homogeneity of this crystal. We have shown that, in the LiNbO3 crystal doped by 0.05 mol % ZnO, due to the displacement of NbLi and Li□ structural defects by Zn2+ cations, the crystal structure is ordered and, simultaneously, the number of defects with localized electrons decreases.  相似文献   

3.
ABSTRACT

A systematic investigation on the influence of the diffusion parameters (time and temperature) and initial titanium film thickness on the spectral characteristics of the LiNbO3 Raman modes is reported. Raman spectra are measured in the range 50–1000 cm?1 ~2 µm below the surface of the crystals. Broadening of the Raman lines and, therefore, crystal lattice disorder induced by the titanium ions are found to depend on the fabrication parameters. The disorder associated with the titanium ions near the surface of LiNbO3 is encoded in the broadening of the A1(TO1) Raman line. A linear relation between the A1(TO1) mode broadening and the Ti concentration is presented. The diffusion theory is used to explain the experimental data. Raman spectroscopy combined with diffusion theory can be used to estimate the evolution of the titanium surface concentration.  相似文献   

4.
The high‐brilliance X‐ray beams from undulator sources at third‐generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a `standard' beam from an undulator source, ~25–50 µm (FWHM) in the vertical and 50–100 µm in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID‐13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA‐CAT) dual canted undulator beamlines at the APS deliver high‐intensity focused beams with a minimum focal size of 20 µm × 65 µm at the sample position. To meet growing user demand for beams to study samples of 10 µm or less, a `mini‐beam' apparatus was developed that conditions the focused beam to either 5 µm or 10 µm (FWHM) diameter with high intensity. The mini‐beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward‐ and back‐scatter guards. A unique triple‐collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini‐beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid‐exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam.  相似文献   

5.
The structure of Er0.715Ca0.285F2.715 crystals as grown from the melt (without heat treatment) has been studied by electron microscopy. It is found that the structure is inhomogeneous, consisting of an ordered tysonite matrix with the hexagonal crystal structure (supercell reflections exhibit the vector 1/8〈203〉 in the units of small tysonite cell), in which crystallites of the other laminar phase with layers ~10 Å thick are incorporated.  相似文献   

6.
A method of calculating the transmission of hard X‐ray radiation through a perfect and well oriented photonic crystal and the propagation of the X‐ray beam modified by a photonic crystal in free space is developed. The method is based on the approximate solution of the paraxial equation at short distances, from which the recurrent formula for X‐ray propagation at longer distances is derived. A computer program for numerical simulation of images of photonic crystals at distances just beyond the crystal up to several millimetres was created. Calculations were performed for Ni inverted photonic crystals with the [111] axis of the face‐centred‐cubic structure for distances up to 0.4 mm with a step size of 4 µm. Since the transverse periods of the X‐ray wave modulation are of several hundred nanometres, the intensity distribution of such a wave is changed significantly over the distance of several micrometres. This effect is investigated for the first time.  相似文献   

7.
Raman intensity analysis of LaCl3 on lines adopted earlier for crystals like LiNO3, KNO3 or YVO4 is found to be unsuitable for LaCl3. The rotation of the LaCl3 pyramids in the unit cell of this crystal is represented by high frequencies, comparable to the internal oscillations of LaCl3 molecule. The intensity ofR z, rotation about the symmetry axis of the crystal, is higher than the total symmetric line. These two factors show that the two molecules in the unit cell cannot be treated separately. Also, the polarisability of the bonds between atoms connecting the molecules cannot be neglected. The intensity formulae have been derived for this crystal and using the directional Raman spectra, electro-optical constants of the LaCl and Cl-Cl bonds have been evaluated. It is found that while the polarisability of Cl-Cl bond between the molecules, is about 0·4 times that of LaCl bonds, in crystals like LiNO3 the polarisability of bonds like Li-O is found to be negligible.  相似文献   

8.
Raman spectra of two well‐defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. The observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations as well as stretching and bending vibrations of water molecules and hydroxyl ions. The non‐interpreted Raman spectra of koritnigite from the RRUFF database and the published infrared spectra of cobaltkoritnigite were used for comparison. The O H···O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X‐ray single‐crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of koritnigite was proved from the Raman spectra, which supports the conclusions of the X‐ray structure analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectra of as-grown and vapor transport equilibration (VTE) treated Er:LiNbO3 crystals, which have different cut orientations (X-cut and Z-cut), different Er-doping levels (Er:(0.2, 0.4 and 2.0 mol%)LiNbO3) and different VTE durations (80, 120, 150 and 180 h), were recorded at room temperature in the wavenumber range 50-1000 cm−1 by using backward scattering geometry. The spectra were attributed on the basis of their spectral features and the previous experimental work and the most recent theoretical progress in lattice dynamics on pure LiNbO3. In comparison with the pure crystal the most remarkable effect of Er-doping on the Raman spectrum is observed for the E(TO9) mode. It does not appear at 610 cm−1 as the pure crystal, but locates at 633 cm−1. In addition, the doping also results in the lowering of the Raman phonon frequency, the broadening of the Raman linewidth and the changes of the relative Raman intensity of some peaks. The VTE treatment results in the narrowing of the linewidth, the recovery of the lowered phonon frequency and the further changes of relative Raman intensity. The narrowing of Raman linewidth indicates that the VTE processing has brought these crystals closer to stoichiometric composition. The VTE treatment has induced the formation of a precipitate ErNbO4 in the high-doped Er(2.0%):LiNbO3 crystals whether X- or Z-cut. For these precipitated crystals, besides above linewidth and phonon frequency features, they also display more significant Raman intensity changes compared with those not precipitated crystals. In addition, a slight mixing between A1(TO) and E(TO) spectra is also observed for these precipitated crystals. Above doping and VTE effects on Raman spectra were quantitatively or qualitatively correlated with the characteristics of the crystal structure and phonon vibrational system.  相似文献   

10.
Monolayer MoS2 is an emerging two-dimensional semiconductor with wide-ranging potential applications in novel electronic and optoelectronic devices. Here, we reported controlled vapor phase growth of hybrid spiral-like MoS2 crystals investigated by multiple means of X-Ray photoemission spectroscopy, scanning electron microscopy, atomic force microscopy, kelvin probe force microscopy, Raman and Photoluminescence techniques. Morphological characterizations reveal an intriguing hybrid spiral-like MoS2 feature whose lower planes are AB Bernal stacking and upper structure is spiral. We ascribe the hybrid spiral-like structure to a screw dislocation drive growth mechanism owing to lower supersaturation and layer-by-layer growth mode. In addition, the electrostatic properties of MoS2 microflakes with hybrid spiral structures are obvious inhomogeneous and dependent on morphology manifested by kelvin probe force microscopy. Our work deepens the understanding of growth mechanisms of CVD-grown MoS2, which is also adoptable to other TMDC materials.  相似文献   

11.
The effect of the sintering temperature of Ce3+-doped Lu3Al5O12 (Ce-LuAG) phosphors on the emission and properties of the crystal structure was studied. A cathodoluminescence peak at 317 nm, which was assigned to lattice defects, was exhibited in addition to emission peaks at 508 and 540 nm for the Ce-LuAG phosphors. The intensities of the 317 nm emission peak for the phosphors with mean particle diameters of 5.0 and 10.0 µm formed at a low sintering temperature of 1430 °C were higher than those for the phosphors with mean particle diameters of 18.0 and 20.5 µm formed at a high sintering temperature of 1550 °C. In contrast, the electroluminescence spectra for fabricated white-light-emitting diodes (LEDs) using the phosphors revealed that the intensity of the peak at 540 nm was strong for the mean particle diameters of 18.0 and 20.5 µm. The intensity of the 540 nm peak, which is attributed to the 4f→5d transition of the Ce3+ activator, showed a dependence on the sintering temperature. The relationship between the optical properties and the lattice defects is discussed.  相似文献   

12.
Monoclinic m‐LaVO4 vanadate with the monazite‐type structure was found to be a new favorable SRS‐active crystal. Its two‐phonon impulsive Stokes lasing has been recorded under near‐IR femtosecond pumping. Knowledge acquired about the behavior of impulsive stimulated Raman scattering in the studied crystals may be useful for the physics of coherent optical phonons and for engineering of femtosecond lasers. The fundamental results obtained here will also motivate the search for crystals able to generate multiphonon impulsive SRS. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
Using a model of oscillating dipoles, we simulate the intensity of the G‐band in the Raman signal from structures consisting of graphene, separated by an arbitrary buffer layer from a substrate. It is found that a structure with an optimized buffer layer refractive index and thickness exhibits a Raman signal which is nearly 50 times more intense than that from the same structure with a non‐optimized buffer layer. The theoretical simulations are verified by Raman measurements on structures consisting of a layer of graphene on SiO2 and Al2O3 buffer layers. The optical contrast of the single graphene layer is calculated for an arbitrary buffer layer. It was found that both the Raman intensity and optical contrast can be maximized by varying the buffer layer thickness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
许政一 《物理学报》1978,27(6):700-709
本文提出了KDP和TGS单晶在静电场作用下中子衍射增强现象的物理机理。KDP和TGS都是质子导电晶体。外加直流电压后,晶体中电场有一空间分布。由于压电效应,相关的衍射晶面间距是空间坐标的函数,造成中子衍射增强。对衍射晶面间距为空间坐标函数的情况,导出了透射方式和反射方式的中子衍射强度公式,估计了非均匀的压电效应引起的中子衍射增强的量级,和实验相符。并对进一步验证上述机理提出了新的实验建议。顺便指出,对于α-LiIO3,在静电场作用下其中子衍射增强,非均匀压电效应不是主要因素。并提出其可能的微观机制是:在非均匀电场作用下,缺陷(包括杂质)在晶体中有一空间分布,引起中子衍射增强。 关键词:  相似文献   

15.
Raman spectroscopy complemented by infrared spectroscopy was used to characterise both gallium oxyhydroxide (α‐GaO(OH)) and gallium oxide (β‐Ga2O3) nanorods synthesised with and without the surfactants using a soft chemical methodology at low temperatures. Nano‐ to micro‐sized gallium oxyhydroxide and gallium oxide materials were characterised and analysed by both X‐ray diffraction and Raman spectroscopy. Rod‐like GaO(OH) crystals with average length of ∼2.5 µm and width of 1.5 µm were obtained. Upon thermally treating gallium oxyhydroxide GaO(OH) to 900 °C, β‐Ga2O3 was synthesised retaining the initial GaO(OH) morphology. Raman spectroscopy has been used to study the structure of nanorods of GaO(OH) and Ga2O3 crystals. Raman spectroscopy shows bands characteristic of GaO(OH) at 950 and ∼1000 cm−1 attributed to Ga OH deformation modes. Bands at 261, 275, 433 and 522 cm−1 are assigned to vibrational modes involving Ga OH units. Bands observed at 320, 346, 418 and 472 cm−1 are assigned to the deformation modes of Ga2O6 octahedra. Two sharp infrared bands at 2948 and 2916 cm−1 are attributed to the GaO(OH) symmetric stretching vibrations. Raman spectroscopy of Ga2O3 provides bands at 630, 656 and 767 cm−1 which are assigned to the bending and stretching of GaO4 units. Raman bands at 417 and 475 cm−1 are attributed to the symmetric stretching modes of GaO2 units. The Raman bands at 319 and 347 cm−1 are assigned to the bending modes of GaO2 units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In the frame of nuclear safeguards, knowledge of the chemical form (stoichiometry) of the uranium compounds present in the micrometric particulate material sampled by wiping surfaces in an inspected nuclear facility may point out the industrial process implemented in the installation. Micro‐Raman spectroscopy (MRS) coupled with scanning electron microscopy (SEM) has been used for the first time to analyze micrometer‐size particles of various uranium oxides [UO2, U3O8, UO3, and UO4 · 4(H2O)] deposited on carbon disks. Uranium particles are detected by means of SEM, and Raman analysis is then directly carried out inside the SEM measurement chamber without moving the carbon disk from SEM to MRS. When particles are deposited on appropriate carbon disks (sticky carbon tapes), despite a loss of signal‐to‐noise ratio of about an order of magnitude with regard to the stand‐alone MRS, all uranium oxides are successfully identified in particles by in‐SEM Raman analysis, obtaining similar characteristic bands as the ones obtained with the stand‐alone MRS. Moreover, with the SEM–MRS coupling, particles as small as 1 µm can be analyzed, whereas, without the SEM–MRS coupling, only particles larger than ~5 µm are efficiently analyzed, after localization inside the SEM, transfer of the sample holder into the MRS, and relocation of the particles inside the MRS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Polarized micro‐Raman spectroscopy was carried out on the (001) face of a 0.67PbMg1/3Nb2/3O3‐33%PbTiO3 (PMN‐33%PT) single crystal. The Raman images revealed the spatial variations of the intensity of the Raman bands, suggesting that the structure in the PMN‐33%PT single crystal varied from one micro‐area to another. When changing the polarization direction of the incident light with respect to the selected crystalline axes, the intensities of the Raman modes varied periodically. According to the Raman selection rules (RSRs), the angular dependences of the Raman modes indicated that the PMN‐33%PT single crystal is in the monoclinic phase. Furthermore, the color patterns in the Raman images were associated with the coexistence of the MA‐ and MC‐type monoclinic phases in the PMN‐33%PT single crystal. Our results provide useful information for understanding the microheterogeneity of the relaxor PMN‐xPT single crystals with compositions near the morphotropic phase boundary region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The 3D hedgehog-like ZnO nanostructures were synthesized on Si substrate through chemical vapor deposition process. The morphology and structure of the products were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, as well as transmission electron microscopy. The ZnO 3D hedgehog-like architectures were found to consist of a central nucleus and multiple side-growing nanowires with diameter of 100–250 nm and length up to 10 µm. The growth mechanism of the hedgehog-like ZnO nanostructures was studied. It revealed a three-step process during the entire growth. Finally, room temperature photoluminescence spectra of ZnO 3D nanostructures showed that the center excitation would render much stronger PL emission intensity. Furthermore, simulation results indicated that the enhanced emission came from light-trapping-induced excitation light field enhancement.  相似文献   

20.
First order Raman spectra of TIS and TlInSe2 single crystals excited with 1.064μm line of the continuously operated YAG: Nd3+ laser have been investigated in equilibrium conditions under various hydrostatic pressures up to 1.08 × 109 and 7.06 × 108 Pa, respectively. Mode parameters γj = (1/νj)(dνj/dP) were determined for all the Raman bands observed. Comparison of a set of these parameters in both crystals showed that the character of binding interatomic forces in these crystals appeared to be similar. For both crystals the intensity of Raman bands decreased with increasing the pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号