首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PbI2 has been adsorbed on the clean InSb(001)-(4 × 1) reconstructed surface and on the InSb(001)-(1 × 3)-Pb lead covered reconstructed surface. On the clean surface epitaxial growth occurred with the unit mesh of the layered PbI2 aligning exactly with both the substrate [110] and [1 0] directions. On desorption a reaction occurred between the last layer of PbI2, and the substrate, forming a series of structures which finished with a well-formed (1 × 3)-Pb structure in which the surface is depleted/enriched in In/Sb compared to the clean (4 × 1). The Pb in this structure is thought to partially replace surface In. Epitaxial adsorption also occurred on the (1 × 3)-Pb surface generating a single, well-formed structure with the hexagonal net of the PbI2 aligned with just the [1 0] substrate direction. The structures and reactions are discussed and a row matching model is proposed to explain the single epitaxial orientation of PbI2 on the (1 × 3)-Pb surface.  相似文献   

2.
The Sb adsorption process on the Si(1 1 1)–In(4×1) surface phase was studied in the temperature range 200–400 °C. The formation of a Si(1 1 1)–InSb (2×2) structure was observed between 0.5 and 0.7 ML of Sb. This reconstruction decomposes when the Sb coverage approaches 1 ML and Sb atoms rearrange to and (2×1) reconstructions; released In atoms agglomerate into islands of irregular shapes. During the phase transition process from InSb(2×2) to Sb (θSb>0.7 ML), we observed the formation of a metastable (4×2) structure. Possible atomic arrangements of the InSb(2×2) and metastable (4×2) phases were discussed.  相似文献   

3.
We have carried out a comprehensive experimental study of the Si(001) c(4×4) surface reconstruction by scanning tunneling microscopy (STM) (at room temperature and elevated temperatures), Auger electron spectroscopy (AES), reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED). Si(001) samples were kept under ultra-high vacuum (UHV) at around 550°C until the c(4×4) reconstruction appeared. STM contrast of the c(4×4) reconstruction is strongly influenced by electronic effects and changes considerably over a range of bias voltages.

The c(4×4) surface reconstruction is a result of stress which is caused by incorporation of impurities or adsorbates in sub-surface locations. The resulting c(4×4) reconstruction in the top layer is a pure silicon structure. The main structural element is a one-dimer vacancy (1-DV). At this vacancy, second layer Si-atoms rebond and cause the adjacent top Si-dimers to brighten up in the STM image at low bias voltages. At higher bias voltage the contrast is similar to Si-dimers on the (2×1) reconstructed Si(001). Therefore, besides the 1-DV and the two adjacent Si-dimers, another Si-dimer under tensile stress may complete the 4× unit cell. This is a refinement of the missing dimer model.  相似文献   


4.
The (111)B surface of GaAs has been investigated using scanning tunneling microscopy (STM) and a number of different reconstructions have been found at different surface stoichiometries. In accordance with electron diffraction studies, we find the series (2 × 2), (1 × 1)LT, ( ) and (1 × 1)HT with increasing annealing temperature, corresponding to decreasing surface As concentration. The (1 × 1)LT is of particular interest, since it only occurs in a narrow temperature window between the two more established reconstructions, the (2 × 2) and the ( ). We find the (1 × 1)LT to take the form of a mixture of the local structures of both the (2 × 2) and ( ) phases, rather than having a distinct structure. This is behaviour consistent with a kinetically limited system, dominated by the supply of As adatoms to the surface, and may be an example of a continuous phase transition. Above the (1 × 1)LT transition, atomic resolution images of the ( ) surface reveal only a three-fold symmetry of the hexagonal structural units, brought about by inequivalent surface bonding due to the 23.4° rotation of the surface unit cell relative to the substrate. This is responsible for the disorder found in the ( ) reconstruction, since the structure may form in one of two domains. At lower surface As concentration, the (1 × 1)HT surface adopts a structure combining small domains of a 19.1° structure and random disorder. There is no apparent similarity between the (1 × 1)LT and (1 × 1)HT structures, which may be due to our measurements being conducted at room temperature and without an As flux to control the surface As concentration.  相似文献   

5.
The formation of the c(6 × 2)−O phase on a Cu(110) surface, after completion of the (2 × 1)−O structure, was observed by scanning tunneling microscopy (STM). The phase is composed of isotropic structural elements on fourfold hollow sites of the substrate lattice, which form a quasi-hexagonal array and manifest themselves as large protrusions in the STM images. Individual units of this type are mobile and also represent stable nuclei within a (2 × 1) surrounding. Nucleation is activated and occurs preferentially at steps, in contrast to previous findings with the (2 × 1) phase. Structural implications of additional weak features in high resolution images and of the observed change in two-dimensional density of Cu atoms are discussed.  相似文献   

6.
We determined surface structures in a structural sequence c(2 × 2)→(4 × 4)→(5 × 5) formed on Ni(001) at 370 K with increasing Li coverage by a dynamical low-energy electron diffraction analysis. The (4 × 4) and (5 × 5) are complex surface-structures involving restructuring of substrate surface atoms, and are analogous to the previously determined (3 × 3) and (4 × 4) structures formed for Li/Cu(001). The c(2 × 2) at low coverages is a Li adlayer, so a change of the adsorption mode from adlayer- to restructuring-type is evidenced in the course of increasing coverage within a monolayer range.  相似文献   

7.
Atomically resolved non-contact fm mode atomic force microscopy images have been obtained from TiO2(100) surfaces. The 1×1 surface is observed, as well as the 1×3 phase previously imaged with STM. The morphology of the latter reconstruction consists of (110) microfacets. An additional reconstruction with 1×3 symmetry is observed, which is assigned to a phase intermediate between the 1×1 and 1×3-microfacet terminations.  相似文献   

8.
G. Goryl  B. Such  M. Szymonski 《Surface science》2007,601(17):3605-3610
InSb(0 0 1) surface prepared by ion sputtering and thermal annealing has been studied in the temperature range from 77 K up to 300 K using scanning tunneling microscopy (STM). At 300 K the surface is c(8 × 2) reconstructed as indicated by low energy electron diffraction and STM images, and its structure appears to be consistent with the “ζ-model” recently proposed for this surface. Upon lowering of the temperature below 180 K a new phase appears on the surface. This phase is characterized by the surface structure period doubling along [1 1 0], lowering the surface symmetry from c2mm to p2, and appearance of structural domains. Possible origins of the new phase are discussed.  相似文献   

9.
S. Kono  T. Goto  Y. Ogura  T. Abukawa 《Surface science》1999,420(2-3):200-212
The possibility of surface electromigration (SE) of metals of In, Ga, Sb and Ag on a very flat Si(001)2×1 substrate (single domain 2×1) was examined by SEM, μ-RHEED and μ-AES under UHV conditions. It was found that Ga, Sb and Ag show no SE on Si(001) surface even at DC annealing temperatures for the desorption of these metals. For In on Si(001), a very fast SE (8000 μm/min) towards the cathode side was found that suddenly sets in at 450°C DC annealing, which was related to a surface phase transition. μ-RHEED and μ-AES observation showed that the SE is related to an ordered 4×3-In phase together with two-dimensional In gas phase over the 4×3-In phase and an In-disordered phase at the front end of SE. Single domain 4×3-In phases were found to occur under sequences of In deposition and DC annealing which involve the In SE on Si(001).  相似文献   

10.
The C amount and the structure of the Si(001)-c(4 x 4) surface is studied using scanning tunneling microscopy (STM) and ab initio calculations. The c(4 x 4) phase is found to contain 1/8 monolayer C (1 C atom in each primitive unit cell). From the C amount and the symmetry of high-resolution STM images, it is inferred that the C atoms substitute the fourth-layer site below the dimer row. We construct a structure model relying on ab initio energetics and STM simulations. Each C atom induces an on-site dimer vacancy and two adjacent rotated dimers on the same dimer row. The c(4 x 4) phase constitutes the subsurface Si(0.875)C(0.125) delta layer with two-dimensionally ordered C atoms.  相似文献   

11.
Vibrational excitations of nitrogen on W(100) are investigated over the 100–300 K temperature range using elastic and inelastic electron scattering. New vibrational modes of nitrogen are identified that require different mode assignments from previous work. Experimental evidence for a molecular precursor to the atomic β2 phase of adsorbed nitrogen is presented. Coverage dependent studies of vibrational modes suggests conversion between two different molecular surface phases and between atomic and molecular phases. A new ordered nitrogen phase characterized by a (4 × 1) LEED pattern is observed. The new phase appears to consist of orthogonal domains of p(4 × 1) symmetry that contain atomic nitrogen at the four fold sites (the β2 atomic phase) with additional bridge-bonded nitrogen atoms in the unit cell.  相似文献   

12.
The role of kinetics in the superstructure formation of the Sb/Si(0 0 1) system is studied using in situ surface sensitive techniques such as low energy electron diffraction, Auger electron spectroscopy and electron energy loss spectroscopy. Sb adsorbs epitaxially at room-temperature on a double-domain (DD) 2 × 1 reconstructed Si(0 0 1) surface at a flux rate of 0.06 ML/min. During desorption, multilayer Sb agglomerates on a stable Sb monolayer (ML) in a DD (2 × 1) phase before desorbing. The stable monolayer desorbs in the 600–850 °C temperature range, yielding DD (2 × 1), (8 × 4), c(4 × 4), DD (2 × 1) phases before retrieving the clean Si(0 0 1)-DD (2 × 1) surface. The stable 0.6-ML (8 × 4) phase here is a precursor phase to the recently reported 0.25-ML c(4 × 4) surface phase, and is reported for the first time.  相似文献   

13.
C. Su  D. Tang  D. Heskett   《Surface science》1994,310(1-3):45-51
Using the technique of angle-resolved inverse photoemission, we have measured the dispersion of an unoccupied Cu(110) surface state for the clean Cu(110) surface and for the (1 × 2) reconstructed Na/Cu(110) surface along the symmetry lines. The dispersion of the crystal-induced surface state of clean Cu(110) at 2.05 eV above the Fermi energy at the point of the SBZ is free-electron-like with an effective mass of (1.0 ± 0.2)me at the point, which is in good agreement with other experimental results as well as a theoretical calculation. This surface state shifts to 2.5 eV above the Fermi energy for the (1 × 2) phase of Na/Cu(110) with a coverage of 0.25 ML, and the dispersion along the direction is considerably reduced compared to the clean surface. On the other hand, the dispersion of this state for (1 × 2) Na/Cu(110) (0.25 ML) along the direction is close to that of clean Cu(110). We account for these results within a missing-row picture of the Na-induced reconstruction.  相似文献   

14.
Noncontact atomic force microscopy (NC-AFM) has been used to study the c(8x2) InSb(001) and the c(8x2) GaAs(001) surfaces prepared by sputter cleaning and annealing. Atomically resolved tip-surface interaction maps display different characteristic patterns depending on the tip front atom type. It is shown that representative AFM maps can be interpreted consistently with the most recent structural model of A(III)B(V)(001) surface, as corresponding to the A(III) sublattice, to the B(V) sublattice, or to the combination of both sublattices.  相似文献   

15.
Spot profile analysis low-energy electron diffraction, low-energy ion scattering and Auger electron spectroscopy were employed to study the morphology and composition of Au films on Si(100). After annealing, two distinct surface reconstructions were observed: a two-domain c(8×2) phase and a four-domain incommensurate (5×3.2)R5.7° phase. During the transition from the c(8×2) to the (5×3.2)R5.7° phase, the subsurface composition changes drastically from Au-rich to Si-rich, whereas the outermost layer composition remains almost constant (about 65 at.% Au). Detailed information concerning the domain structure for the two phases is subtracted from the profiles of the LEED spots.  相似文献   

16.
The coadsorption of CO and ammonia on Ru(001) has been investigated by low-energy electron diffraction (LEED), temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). The main focus has been on the interaction between different admolecules on the surface and its important role in surface reaction. Exposing CO-precovered Ru(001) to ammonia at 100 K leads to the formation of mixed ordered layers with a (2 × 2) periodicity. It was found that two types of (2 × 2) structures are formed depending on the CO precoverage. One of the (2 × 2) structures (-phase) contains one CO and two ammonia molecules per (2 × 2) unit cell and the other (β-phase) contains two CO and one ammonia. Structure models for the two phases are proposed based on vibrational spectra measured for the coadsorbed phases of CO and ammonia (15NH3 or ND3). TPD results suggest that the ammonia dissociation takes place on clean and CO-precovered Ru(001). The amount of dissociated ammonia decreased initially with increasing CO precoverage, passed a minimum at θCO = 0.25, increased with a further increase of CO coverage, and eventually reached a saturation value above θCO = 0.5. The dissociation of ammonia in the β−(2 × 2) structure was found to be enhanced by a factor of 4–6 as compared with the dissociation in the −(2 × 2) structure. The HREEL spectra indicated that the C3v molecular axis of ammonia is tilted in the coadsorbed layers, the tilting being most pronounced in the β−(2 × 2) phase with a high CO partial coverage. This observation suggests that the tilting of ammonia due to the interaction with CO facilitates electron donation from Ru 4d to LUMO of ammonia, leading to the N-H bond dissociation. The microscopic model for the CO-NH3 interaction on metal surfaces is presented.  相似文献   

17.
Periodic, self-consistent, density functional theory (GGA-PW91) calculations are performed for both surface and subsurface atomic hydrogen on and in Ni(1 1 1). At a low coverage (θ=0.25 ML), the binding energies (BEs) of a hydrogen atom in surface fcc, subsurface octahedral (first layer), and subsurface octahedral (second layer) sites are −2.89, −2.18, and −2.11 eV, respectively. The activation energy barriers for hydrogen diffusion from the surface to the first subsurface layer and from the first to the second subsurface layer are estimated to be 0.88 and 0.52 eV, respectively. In the entire coverage range studied, hydrogen occupies surface fcc and hcp sites and subsurface octahedral sites. In addition, the magnitude of the BE per hydrogen atom and the magnetization of the nickel slabs both decrease as hydrogen coverage increases. Vibrational frequencies of hydrogen at various surface and subsurface sites are calculated and are in reasonable agreement with experimental data. A phase stability calculation with a 2 × 2 surface unit cell shows that a p(2 × 2)-2H overlayer structure (θ=0.5 ML) and a p(1 × 1)-1H structure (θ=1.0 ML) are stable at low hydrogen pressures, in agreement with numerous experimental results. A very large increase in pressure is required to populate subsurface sites. After such an increase occurs, the first subsurface layer is filled completely.  相似文献   

18.
19.
V. M. Bermudez   《Surface science》2003,540(2-3):255-264
Cycloaddition reactions between 1,3-butadiene and the C-terminated SiC(1 0 0)-c(2 × 2) surface have been addressed using quantum-chemical methods. The c(2 × 2) structure consists of ---CC--- bridges between underlayer Si atoms which themselves form Si---Si bonds. Of various possible reaction products, the one formed by a [2 + 4] reaction with the ---CC--- bridge (giving a species resembling 1,4-cyclohexadiene) is the lowest in energy. Density functional calculations for the bare c(2 × 2) surface, using a cluster model with mechanical embedding, gave good agreement with structural parameters obtained in previous fully ab initio studies. Similar calculations for the cycloaddition product and for the transition state gave a reaction energy of −50.3 kcal/mol and an activation energy of +6.1 kcal/mol to form a planar ring structure lying normal to the surface. Detailed results for the frequency and infrared polarization behavior of adsorbate vibrational modes have also been obtained.  相似文献   

20.
K. W. Self  C. Yan  W. H. Weinberg   《Surface science》1997,380(2-3):408-416
Scanning tunneling microscopy and temperature-programmed desorption have been used to investigate the chemistry of water on Si(111)-(7 × 7) substrates which were misoriented 2° toward the [ 10] direction. Upon room temperature exposure to water, the adatoms of the (7 × 7) unit cell are still evident even after high exposures, implying that major modifications of the substrate do not occur. At high coverages, the distribution of reacted adatoms shifts from one controlled by dissociative adsorption across the adatom-rest atom pair to a statistical distribution based on the availability of dangling bonds. Desorption of the oxide layer which remains after water adsorption and the desorption of hydrogen have also been characterized. The oxide desorption occurs along well-defined wavefronts which originate at step edges and advance in directions consistent with the underlying substrate symmetry, primarily the [ 2] direction (i.e. the wave vector points in the [ 2] direction). In regions of the surface where the oxide has desorbed, the (7 × 7) unit cell can be seen clearly. Vacancies resulting from the loss of surface silicon atoms (via the etching) coalesce into islands in the clean regions of the terraces, but unlike desorption of oxide layers from Si(100), the desorption does not occur from the boundaries of these vacancy islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号