首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋阳  谢海滨  杨光 《波谱学杂志》2016,33(4):559-569
字典学习算法可以根据数据本身的特点构建稀疏域中的基,从而使数据的表示更加稀疏.该文在传统的字典学习算法基础上提出了分割字典学习算法,由于部分磁共振图像组织结构简单、可以进行图像分割,因此可根据此特点来优化字典中基函数的构建,使磁共振图像的表达更为稀疏,从而获得更高的重建图像质量.该文利用模拟数据和真实数据进行了重建实验,结果表明与传统的字典学习算法相比,分割字典学习算法能进一步改善重建图像质量.  相似文献   

2.
吕晨  杨长春  晁亚 《应用声学》2016,24(12):49-49
目前,肺癌的是发病率最高的肿瘤,若能在早期发现癌变并进行相应治疗,将极大的提高患者的生存率。肺癌的症状在早期表现为肺结节。以提高肺结节检测识别率并进行良恶性分类为目的,提出了一种改进的LVQ分类器算法。首先使用C-V算法对原始图像进行肺实质分割,再使用最优阈值法进行感兴趣区域提取,并进行特征提取和特征归一化。使用多次聚类算法检测肺结节。使用基于改进的LVQ分类器进行肺结节的良恶性进行分类。利用改进后的LVQ分类器在LIDC数据集上进行实验,得到了对良性结节的确诊率为87.3%,对恶性结节的确诊率为80.8%。实验结果表明,改进后的算法在良恶性结节分类上具有较高的确诊率,有助于提高医生的工作效率,实现肺结节的辅助发现。  相似文献   

3.
Kohonen's self-organizing map is a two-layer feedforward competitive learning network. It has been used as a competitive learning clustering algorithm. In this paper, we generalize Kohonen's competitive learning (KCL) algorithm with fuzzy and fuzzy-soft types called fuzzy KCL (FKCL) and fuzzy-soft KCL (FSKCL). These generalized KCL algorithms fuse the competitive learning with soft competition and fuzzy c-means (FCM) membership functions. We then apply these generalized KCLs to MRI and MRA ophthalmological segmentations. These KCL-based MRI segmentation techniques are useful in reducing medical image noise effects using a learning mechanism. They may be particularly helpful in clinical diagnosis. Two real cases with MR image data recommended by an ophthalmologist are examined. First case is a patient with Retinoblastoma in her left eye, an inborn malignant neoplasm of the retina frequently metastasis beyond the lacrimal cribrosa. The second case is a patient with complete left side oculomotor palsy immediately after a motor vehicle accident. Her brain MRI with MRA, skull routine, orbital CT, and cerebral angiography did not reveal brainstem lesions, skull fractures, or vascular anomalies. These generalized KCL algorithms were used in segmenting the ophthalmological MRIs. KCL, FKCL and FSKCL comparisons are made. Overall, the FSKCL algorithm is recommended for use in MR image segmentation as an aid to small lesion diagnosis.  相似文献   

4.
前列腺区域的精确分割是提高计算机辅助前列腺癌诊断准确率的重要前提.本文提出了一种新的精确的前列腺区域分割模型,分为4个步骤:首先,读取T2加权磁共振(MR)图像;其次,利用半径为5个像素的8邻域模板(8x5)的局部二值模式(LBP)特征模板计算前列腺磁共振图像的LBP特征图;然后,利用改进的距离正则化水平集(DRLSE)模型对特征图进行分割,提取前列腺粗轮廓;最后将原始水平集能量函数进行优化,构造一个新的能量函数,提取局部灰度信息和梯度信息,并在此新的能量函数的基础上,将粗轮廓迭代演化为最终的细轮廓.本文将该模型在203组来自于国际光学与光子学学会-美国医学物理学家协会-国家癌症研究所(SPIE-AAPM-NCI)前列腺MR分类挑战数据库的T2W磁共振图像上进行了测试,并与医生手工分割结果进行了比较,结果表明本文提出模型得到的分割结果的Dice系数为0.94±0.01,相对体积差(RVD)为-1.21%±2.44%,95% Hausdorff距离(HD)为6.15±0.66 mm;与文献中现有的分割模型相比,使用本文提出的模型得到的前列腺区域分割结果更接近于手工分割的结果.  相似文献   

5.
Magnetic resonance imaging (MRI) is a valuable diagnostic tool in medical science due to its capability for soft-tissue characterization and three-dimensional visualization. One potential application of MRI in clinical practice is brain parenchyma classification and segmentation. Based on fuzzy knowledge and modified seeded region growing, this work proposes a novel image segmentation method, called Fuzzy Knowledge-Based Seeded Region Growing (FKSRG), for multispectral MR images. In this work, fuzzy knowledge includes the fuzzy edge, fuzzy similarity and fuzzy distance, which are obtained from relationships between pixels in multispectral MR images and are applied to the modified seeded regions growing process. In conventional regions merging, the final number of regions is unknown. Therefore, a Target Generation Process is proposed and applied to support conventional regions merging, such that the FKSRG method does not over- or undersegment images. Finally, two image sets, namely, computer-generated phantom images and real MR images, are used in experiments to assess the effectiveness of the proposed FKSRG method. Experimental results demonstrate that the FKSRG method segments multispectral MR images much more effectively than the Functional MRI of the Brain Automated Segmentation Tool, K-means and Support Vector Machine methods.  相似文献   

6.
Constrained energy minimization (CEM) has proven highly effective for hyperspectral (or multispectral) target detection and classification. It requires a complete knowledge of the desired target signature in images. This work presents “Unsupervised CEM (UCEM),” a novel approach to automatically target detection and classification in multispectral magnetic resonance (MR) images. The UCEM involves two processes, namely, target generation process (TGP) and CEM. The TGP is a fuzzy-set process that generates a set of potential targets from unknown information and then applies these targets to be desired targets in CEM. Finally, two sets of images, namely, computer-generated phantom images and real MR images, are used in the experiments to evaluate the effectiveness of UCEM. Experimental results demonstrate that UCEM segments a multispectral MR image much more effectively than either Functional MRI of the Brain's (FMRIB's) automated segmentation tool or fuzzy C-means does.  相似文献   

7.
PurposeAlzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. In recent years, machine learning methods have been widely used on analysis of neuroimage for quantitative evaluation and computer-aided diagnosis of AD or prediction on the conversion from mild cognitive impairment (MCI) to AD. In this study, we aimed to develop a new deep learning method to detect or predict AD in an efficient way.Materials and methodsWe proposed a densely connected convolution neural network with connection-wise attention mechanism to learn the multi-level features of brain MR images for AD classification. We used the densely connected neural network to extract multi-scale features from pre-processed images, and connection-wise attention mechanism was applied to combine connections among features from different layers to hierarchically transform the MR images into more compact high-level features. Furthermore, we extended the convolution operation to 3D to capture the spatial information of MRI. The features extracted from each 3D convolution layer were integrated with features from all preceding layers with different attention, and were finally used for classification. Our method was evaluated on the baseline MRI of 968 subjects from ADNI database to discriminate (1) AD versus healthy subjects, (2) MCI converters versus healthy subjects, and (3) MCI converters versus non-converters.ResultsThe proposed method achieved 97.35% accuracy for distinguishing AD patients from healthy control, 87.82% for MCI converters against healthy control, and 78.79% for MCI converters against non-converters. Compared with some neural networks and methods reported in recent studies, the classification performance of our proposed algorithm was among the top ranks and improved in discriminating MCI subjects who were in high risks of conversion to AD.ConclusionsDeep learning techniques provide a powerful tool to explore minute but intricate characteristics in MR images which may facilitate early diagnosis and prediction of AD.  相似文献   

8.
Segmentation of the left ventricle from cardiac magnetic resonance images (MRI) is very important to quantitatively analyze global and regional cardiac function. The aim of this study is to develop a novel and robust algorithm which can improve the accuracy of automatic left ventricle segmentation on short-axis cardiac MRI. The database used in this study consists of three data sets obtained from the Sunnybrook Health Sciences Centre. Each data set contains 15 cases (4 ischemic heart failures, 4 non-ischemic heart failures, 4 left ventricle (LV) hypertrophies and 3 normal cases). Three key techniques are developed in this segmentation algorithm: (1) ray scanning approach is designed for segmentation of images with left ventricular outflow tract (LVOT), (2) a region restricted technique is employed for epicardial contour extraction, and (3) an edge map with non-maxima gradient suppression approach is put forward to improve the dynamic programming to derive the epicardial boundary. The validation experiments were performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 91%, the average perpendicular distance is about 2 mm. The overlapping dice metric is about 0.92. The regression and determination coefficient between the experts and our proposed method on the ejection fraction (EF) is 1.01 and 0.9375, respectively; they are 0.9 and 0.8245 for LV mass. The proposed segmentation method shows the better performance and is very promising in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.  相似文献   

9.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks.  相似文献   

10.
Machine learning (ML)-based segmentation methods are a common technique in the medical image processing field. In spite of numerous research groups that have investigated ML-based segmentation frameworks, there remains unanswered aspects of performance variability for the choice of two key components: ML algorithm and intensity normalization. This investigation reveals that the choice of those elements plays a major part in determining segmentation accuracy and generalizability. The approach we have used in this study aims to evaluate relative benefits of the two elements within a subcortical MRI segmentation framework. Experiments were conducted to contrast eight machine-learning algorithm configurations and 11 normalization strategies for our brain MR segmentation framework. For the intensity normalization, a Stable Atlas-based Mapped Prior (STAMP) was utilized to take better account of contrast along boundaries of structures. Comparing eight machine learning algorithms on down-sampled segmentation MR data, it was obvious that a significant improvement was obtained using ensemble-based ML algorithms (i.e., random forest) or ANN algorithms. Further investigation between these two algorithms also revealed that the random forest results provided exceptionally good agreement with manual delineations by experts. Additional experiments showed that the effect of STAMP-based intensity normalization also improved the robustness of segmentation for multicenter data sets. The constructed framework obtained good multicenter reliability and was successfully applied on a large multicenter MR data set (n > 3000). Less than 10% of automated segmentations were recommended for minimal expert intervention. These results demonstrate the feasibility of using the ML-based segmentation tools for processing large amount of multicenter MR images. We demonstrated dramatically different result profiles in segmentation accuracy according to the choice of ML algorithm and intensity normalization chosen.  相似文献   

11.
Exploiting the wavelet structure in compressed sensing MRI   总被引:1,自引:0,他引:1  
Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms.  相似文献   

12.
磁共振成像(MRI)实验时常采用多次扫描累加平均提高图像信噪比(SNR),但当扫描过程中运动引起图像变形时,简单地累加平均就无法奏效.为此,本研究组曾提出一种匹配加权平均方法(MWA)提高图像的信噪比.在此基础上,该文提出一种旋转不变的非局域均值算法(RINLM),即选取圆形邻域区域并将其划分为一系列以中心像素为圆心的等面积圆环,再计算模式的相似性.RINLM算法可以更好地利用图像中旋转的冗余信息、找到更多的相似结构,提高算法的去噪性能.我们把该方法应用于低信噪比图像序列的平均和去噪中,可以更好地处理旋转的局部运动.与非局域均值算法(NLM)相比,RINLM算法可以进一步提高图像的信噪比;与MWA方法相比,其与RINLM算法的结合可以进一步提高磁共振图像序列信噪比,更好的保持图像边缘信息.  相似文献   

13.

Purpose

The objective of this paper was to automatically segment the cerebellum from T1-weighted human brain magnetic resonance (MR) images.

Materials and Methods

The proposed method constructs a cerebellum template using five sets of 3-T MR imaging (MRI) data, which are used to determine the initial position and the shape prior of the cerebellum for the active contour model. Our formulation includes the active contour model with shape prior, which thereby maintains the shape of the template. The proposed active contour model is sequentially applied to sagittal-, coronal- and transverse-view images. To evaluate the proposed method, it is applied to BrainWeb data and a 3-T MRI data set and compared with FreeSurfer with respect to performance assessment metrics.

Results

The segmented cerebellum was compared with the results from FreeSurfer. Using the manually segmented cerebellum as reference, we measured the average Jaccard coefficients of the proposed method, which were 0.882 and 0.885 for the BrainWeb data and 3-T MRI data set, respectively.

Conclusion

We presented the active contour model with shape prior for extracting the cerebellum from T1-weighted brain MR images. The proposed method yielded a robust and accurate segmentation result.  相似文献   

14.
White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box-whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation (R=0.9641, P value=3.12×10(-3)) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.  相似文献   

15.
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.  相似文献   

16.
MVI is a risk assessment factor related to hepatocellular carcinoma (HCC) recurrence after hepatectomy or liver transplantation. The goal of this paper is to study the preoperative diagnosis of microvascular invasion (MVI) by using a deep learning algorithm in non-contrast T2 weighted magnetic resonance imaging (MRI) images instead of pathological images. Herein, an ensemble learning algorithm named H-DARnet—based on the difference degree and attention mechanism, combined with radiomics, for MVI prediction—is proposed. Our hybrid network combines the fine-grained, high-level semantic, and radiomics features and exhibits a rich multilevel-feature architecture composed of global-local-prior knowledge with suitable complementarity. The total loss function comprises two regularization items––the triplet and the cross-entropy loss function––which are selected for the triplet network and SE-DenseNet, respectively. The hard triplet sample selection strategy for a triplet network and data augmentation for small-scale liver image datasets in convolutional neural network (CNN) training is indispensable. For 200 patch level test samples (135 positive samples and 65 negative samples), our method can obtain the best prediction results, the AUC, sensitivity, and specificity were 0.826, 79.5% and 73.8%, respectively. The experiment results show that MVI can be predicted by using MRI images, and the proposed method is better than other deep learning algorithms and hand-crafted feature algorithms. The proposed ensemble learning algorithm is proved to be an effective method for MVI prediction.  相似文献   

17.
Handcrafted fuzzy rules for tissue classification   总被引:1,自引:1,他引:0  
This article proposes a handcrafted fuzzy rule-based system for segmentation and identification of different tissue types in magnetic resonance (MR) brain images. The proposed fuzzy system uses a combination of histogram and spatial neighborhood-based features. The intensity variation from one type of tissue to another is gradual at the boundaries due to the inherent nature of the MR signal (MR physics). A fuzzy rule-based approach is expected to better handle these variations and variability in features corresponding to different types of tissues. The proposed segmentation is tested to classify the pixels of the T2-weighted axial MR images of the brain into three primary tissue types: white matter, gray matter and cerebral-spinal fluid. The results are compared with those from manual segmentation by an expert, demonstrating good agreement between them.  相似文献   

18.
Tumor segmentation from magnetic resonance imaging (MRI) is important for volume estimation and visualization of nasopharyngeal carcinoma (NPC). In some cases, segmentation using the general multispectral (GM) method often obtained poor results due to the high false positives caused by complex anatomic structures and serious overlap in feature space. In this study, a texture combined multispectral fuzzy clustering (TCMFC) segmentation algorithm was proposed. A texture measure of T1-weighted (T1) MR image was introduced by calculating the two-order central statistical information of every pixel within a window after the window convolution operation. The texture measure and the intensities in T1 and contrast-enhanced T1 images formed the new 3-D feature vector for fuzzy clustering implemented by semi-supervised fuzzy c-means (SFCM). Testing showed that by reducing the false positives significantly, the TCMFC method achieved improved segmentation results, compared with the GM method.  相似文献   

19.
Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation.  相似文献   

20.
This paper presents MRI segmentation techniques to differentiate abnormal and normal tissues in Ophthalmology using fuzzy clustering algorithms. Applying the best-known fuzzy c-means (FCM) clustering algorithm, a newly proposed algorithm, called an alternative fuzzy c-mean (AFCM), was used for MRI segmentation in Ophthalmology. These unsupervised segmentation algorithms can help Ophthalmologists to reduce the medical imaging noise effects originating from low resolution sensors and/or the structures that move during the data acquisition. They may be particularly helpful in the clinical oncological field as an aid to the diagnosis of Retinoblastoma, an inborn oncological disease in which symptoms usually show in early childhood. For the purpose of early treatment with radiotherapy and surgery, the newly proposed AFCM is preferred to provide more information for medical images used by Ophthalmologists. Comparisons between FCM and AFCM segmentations are made. Both fuzzy clustering segmentation techniques provide useful information and good results. However, the AFCM method has better detection of abnormal tissues than FCM according to a window selection. Overall, the newly proposed AFCM segmentation technique is recommended in MRI segmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号