首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrospray ionization (ESI) in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry provides for mass analysis of biological molecules with unrivaled mass accuracy, resolving power and sensitivity. However, ESI FTICR MS performance with on-line separation techniques such as liquid chromatography (LC) and capillary electrophoresis has to date been limited primarily by pulsed gas assisted accumulation and the incompatibility of the associated pump-down time with the frequent ion beam sampling requirement of on-line chromatographic separation. Here we describe numerous analytical advantages that accrue by trapping ions at high pressure in the first rf-only octupole of a dual octupole ion injection system before ion transfer to the ion trap in the center of the magnet for high performance mass analysis at low pressure. The new configuration improves the duty cycle for analysis of continuously generated ions, and is thus ideally suited for on-line chromatographic applications. LC/ESI FTICR MS is demonstrated on a mixture of 500 fmol of each of three peptides. Additional improvements include a fivefold increase in signal-to-noise ratio and resolving power compared to prior methods on our instrument.  相似文献   

2.
Undesired fragmentation of electrospray generated ions in an rf multipole traps can be problematic in many applications. Of special interest here is ion dissociation in a 2-D quadrupole ion trap external to a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) used in proteomic studies. In this work, we identified the experimental parameters that determine the efficiency of ion fragmentation. We have found that under the pressure conditions used in this study there is a specific combination of the radial and axial potential well depths that determines the fragmentation threshold. This combination of rf and dc fields appears to be universal for ions of different mass-to-charge ratios, molecular weights, and charge states. Such universality allows the fragmentation efficiency of the trapped ions in the course of capillary liquid chromatography (LC) separation studied to be controlled and can increase the useful duty cycle and dynamic range of a FTICR mass spectrometer equipped with an external rf only 2-D quadrupole ion trap.  相似文献   

3.
Mass and top-down analyses of 150-kDa monoclonal immunoglobulin gamma (IgG) antibodies were performed on an Orbitrap analyzer. Three different sample delivery methods were tested including (1) infusion of an off-line desalted IgG sample using nano-electrospray; (2) on-line desalting followed by a step elution with a high percentage of organic solvent; and (3) reversed-phase HPLC separation and on-line mass and top-down analyses of disulfide isoforms of an IgG2 antibody. The accuracy of mass measurements of intact antibody was within ±2 Da (15 ppm). The glycoforms of intact IgG antibodies separated by 162 Da were baseline resolved. In-source fragmentation of the intact antibodies produced mainly 115 residue fragments including N-terminal variable domains of heavy and light chains. The sequence coverage (the number of cleavages) was greatly increased after reduction of disulfide bonds and HPLC/MS/MS analysis of light and heavy chains using collision-induced dissociation in the ion trap of the LTQ-Orbitrap. This is an attractive alternative to peptide mapping for characterization and monitoring of post-translational modifications attributed to minimal sample preparation, high speed of the mass/top-down analysis, and relatively minor method-induced sample modifications.  相似文献   

4.
Targeted tandem mass spectrometry (MS/MS) is an attractive proteomic approach that allows selective identification of peptides exhibiting abundance differences, e.g., between culture conditions and/or diseased states. Herein, we report on a targeted LC-MS/MS capability realized with a hybrid quadrupole-7 tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer that provides data-dependent ion selection, accumulation, and dissociation external to the ICR trap, and a control software that directs intelligent MS/MS target selection based on LC elution time and m/z ratio. We show that the continuous on-the-fly alignment of the LC elution time during the targeted LC-MS/MS experiment, combined with the high mass resolution of FTICR MS, is crucial for accurate selection of targets, whereas high mass measurement accuracy MS/MS data facilitate unambiguous peptide identifications. Identification of a subset of differentially abundant proteins from Shewanella oneidensis grown under suboxic versus aerobic conditions demonstrates the feasibility of such approach.  相似文献   

5.
We have developed and implemented a novel mass spectrometry (MS) platform combining the advantages of high mass accuracy and resolving power of Fourier transform ion cyclotron resonance (FTICR) with the economy and speed of multiple ion traps for tandem mass spectrometry. The instruments are integrated using novel algorithms and software and work in concert as one system. Using chromatographic time compression, a single expensive FTICR mass spectrometer can match the throughput of multiple relatively inexpensive ion trap instruments. Liquid chromatography (LC)-mass spectrometry data from the two types of spectrometers are aligned and combined to hybrid datasets, from which peptides are identified using accurate mass from the FTICR data and tandem mass spectra from the ion trap data. In addition, the high resolving power and dynamic range of a 12 tesla FTICR also allows precise label-free quantitation. Using two ion traps in parallel with one LC allows simultaneous MS/MS experiments and optimal application of collision induced dissociation and electrontransfer dissociation throughout the chromatographic separation for increased proteome coverage, characterization of post-translational modifications and/or simultaneous measurement in positive and negative ionization mode. An FTICR-ion trap cluster can achieve similar performance and sample throughput as multiple hybrid ion trap-FTICR instruments, but at a lower cost. We here describe the first such FTICR-ion trap cluster, its performance and the idea of chromatographic compression.  相似文献   

6.
A fast dynamic ion cooling technique based upon the adiabatic invariant phenomenon for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is presented. The method cools ions in the FTICR trap more efficiently, within a few hundred milliseconds without the use of a buffer gas, and results in a substantial signal enhancement. All performance aspects of the FTICR spectrum, e.g., peak intensities, mass resolution, and mass accuracy, improve significantly compared with cooling based on ion-ion interactions. The method may be useful in biological applications of FTICR, such as in proteomic studies involving extended on-line liquid chromatography (LC) separations, in which both the duty cycle and mass accuracy are crucially important.  相似文献   

7.
An automated top-down approach including data-dependent MS(3) experiment for protein identification/characterization is described. A mixture of wild-type yeast proteins has been separated on-line using reverse-phase liquid chromatography and introduced into a hybrid linear ion trap (LTQ) Fourier transform ion cylclotron resonance (FTICR) mass spectrometer, where the most abundant molecular ions were automatically isolated and fragmented. The MS(2) spectra were interpreted by an automated algorithm and the resulting fragment mass values were uploaded to the ProSight PTM search engine to identify three yeast proteins, two of which were found to be modified. Subsequent MS(3) analyses pinpointed the location of these modifications. In addition, data-dependent MS(3) experiments were performed on standard proteins and wild-type yeast proteins using the stand alone linear trap mass spectrometer. Initially, the most abundant molecular ions underwent collisionally activated dissociation, followed by data-dependent dissociation of only those MS(2) fragment ions for which a charge state could be automatically determined. The resulting spectra were processed to identify amino acid sequence tags in a robust fashion. New hybrid search modes utilized the MS(3) sequence tag and the absolute mass values of the MS(2) fragment ions to collectively provide unambiguous identification of the standard and wild-type yeast proteins from custom databases harboring a large number of post-translational modifications populated in a combinatorial fashion.  相似文献   

8.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

9.
The curcuminoids are a group of diarylheptanoid molecules that possess important pharmacological activities, particularly acting as anti-inflammatory agents. The main purpose of this study was to investigate the fragmentation behavior of the three major curcuminoids in ion trap liquid chromatography/tandem mass spectrometry (LC/MS/MS). Both positive and negative mode electrospray ionization in tandem and multidimensional MS(n) experiments in quadrupole ion trap instruments and high-resolution and accurate mass MS and sustained off-resonance irradiation (SORI) MS/MS experiments in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer were used to elucidate the main fragmentation channels of these compounds. These experiments yielded essentially the same fragmentation results in both ion trap and ICR instruments for all three curcuminoids and for their phenolic monoacetates. Major and diagnostic fragment ions were identified and their origins are proposed.  相似文献   

10.
Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.  相似文献   

11.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the characterization of related compounds in commercial bacitracin samples. Mass spectral data for these polypeptide antibiotics were acquired on a LCQ ion trap mass spectrometer equipped with an electrospray ionization probe operated in the positive and negative ion mode. The LCQ ion trap is ideally suited for the sequencing of those linear side-chain cyclized peptides because it provides on-line LC/MS(n) capability. Using this method bacitracin A, 1-epibacitracin A, bacitracins B(1), B(2), B(3) and bacitracin F were sequenced and previous sequencing was confirmed. Bacitracins C(1), C(2), C(3), D, H(2) and H(3) were resolved chromatographically and their ring portion was sequenced for the first time. Four components not described in the literature (1-epibacitracin B(1), 1-epibacitracin B(2), 1-epibacitracin C(1) and H(4)) were sequenced completely for the first time. The main advantage of this hyphenated LC/MS(n) technique is the characterization of the related substances without time-consuming isolation and purification procedures.  相似文献   

12.
Liquid chromatography-mass spectrometry (LC-MS) datasets can be compared or combined following chromatographic alignment. Here we describe a simple solution to the specific problem of aligning one LC-MS dataset and one LC-MS/MS dataset, acquired on separate instruments from an enzymatic digest of a protein mixture, using feature extraction and a genetic algorithm. First, the LC-MS dataset is searched within a few ppm of the calculated theoretical masses of peptides confidently identified by LC-MS/MS. A piecewise linear function is then fitted to these matched peptides using a genetic algorithm with a fitness function that is insensitive to incorrect matches but sufficiently flexible to adapt to the discrete shifts common when comparing LC datasets. We demonstrate the utility of this method by aligning ion trap LC-MS/MS data with accurate LC-MS data from an FTICR mass spectrometer and show how hybrid datasets can improve peptide and protein identification by combining the speed of the ion trap with the mass accuracy of the FTICR, similar to using a hybrid ion trap-FTICR instrument. We also show that the high resolving power of FTICR can improve precision and linear dynamic range in quantitative proteomics. The alignment software, msalign, is freely available as open source.  相似文献   

13.
External ion accumulation in a two-dimensional (2D) multipole trap has been shown to increase the sensitivity, dynamic range and duty cycle of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. However, it is important that trapped ions be detected without significant bias at longer accumulation times in the external 2D multipole trap. With increasing ion accumulation time pronounced m/z discrimination was observed when trapping ions in an accumulation quadrupole. In this work we show that superimposing lower rf-amplitude dipolar excitation over the main rf-field in the accumulation quadrupole results in disruption of the m/z discrimination and can potentially be used to achieve unbiased external ion accumulation with FTICR.  相似文献   

14.
Capillary separations interfaced to tandem mass spectrometry provide a very powerful tool for the characterization of biological macromolecules such as proteins and peptides. The development of real time data-dependent data acquisition has further enhanced the capability of this method. However, the application of this technique to fast capillary separations has been limited by the relatively slow spectral acquisition speed available on scanning mass spectrometers. In this work, an ion trap storage/reflectron time-of-flight mass spectrometer (IT/reTOF-MS) has been used as an on-line tandem mass detector for capillary high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) separations of peptide mixtures including a protein digest. By taking advantage of the nonscanning property of the time-of-flight mass spectrometer, a fast spectral acquisition rate has been achieved. This fast spectral acquisition rate, combined with a new protocol that speeds up tickle voltage optimization, has provided MS/MS spectra for multiple components in a hemoglobin digest during one liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) run. Further, the IT/reTOF-MS has the speed to provide MS/MS spectra for multiple components in a CE separation of a synthetic peptide mixture within one CE/MS/MS run.  相似文献   

15.
Capillary high-performance liquid chromatography has been coupled on-line with an ion trap storage/reflectron time-of-flight mass spectrometer to perform tandem mass spectrometry for tryptic peptides. Selection and fragmentation of the precursor ions were performed in a three-dimensional ion trap, and the resulting fragment ions were pulsed out of the trap into a reflectron time-of-flight mass spectrometer for mass analysis. The stored waveform inverse Fourier transform waveform was applied to perform ion selection and an improved tickle voltage optimization scheme was used to generate collision-induced dissociation. Tandem mass spectra of various doubly charged tryptic peptides were investigated where a conspicuous y ion series over a certain mass range defined a partial amino acid sequence. The partial sequence was used to determine the identity of the peptide or even the protein by database search using the sequence tag approach. Several peptides from tryptic digests of horse heart myoglobin and bovine cytochrome c were selected for tandem mass spectrometry (MS/MS) where it was demonstrated that the proteins could be identified based on sequence tags derived from MS/MS spectra. This approach was also utilized to identify protein spots from a two-dimensional gel separation of a human esophageal adenocarcinoma cell line.  相似文献   

16.
Endostatin, a C-terminal fragment of collagen XVIII, is a promising protein drug which is in development for cancer therapy due to its anti-angiogenic activity. Although several endogenous molecular forms of human endostatin differing in their N-terminal length and their post-translational modifications (18.5-22 kDa) have been discovered, only one recombinant form of 20 kDa is used in clinical trials. This protein, recombinantly expressed in Pichia pastoris, contains four cysteines forming two disulfide bonds (Cys1-Cys4 and Cys2-Cys3). In contrast, there are conflicting data about the disulfide pattern of endogenous material. This report presents the disulfide analyses of both the endogenous circulating endostatins isolated from human hemofiltrate and the recombinant protein. The determination of the disulfide pattern was performed by Edman degradation, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and electrospray ionization ion trap mass spectrometry (ESI-ITMS) performed in the off-line nanospray mode. All native and recombinant endostatins exhibited a Cys1-Cys4 (Cys(162)-Cys(302)) and Cys2-Cys3 (Cys(264)-Cys(294)) linkage. For a clear discussion of fragmented disulfide-bridged peptide chains obtained from MS(n) experiments, a modified general nomenclature is proposed.  相似文献   

17.
A two-dimensional quadrupole ion trap mass spectrometer   总被引:8,自引:0,他引:8  
The use of a linear or two-dimensional (2-D) quadrupole ion trap as a high performance mass spectrometer is demonstrated. Mass analysis is performed by ejecting ions out a slot in one of the rods using the mass selective instability mode of operation. Resonance ejection and excitation are utilized to enhance mass analysis and to allow isolation and activation of ions for MS(n) capability. Improved trapping efficiency and increased ion capacity are observed relative to a three-dimensional (3-D) ion trap with similar mass range. Mass resolution comparable to 3-D traps is readily achieved, including high resolution at slower scan rates, although adequate mechanical tolerance of the trap structure is a requirement. Additional advantages of 2-D over 3-D ion traps are also discussed and demonstrated.  相似文献   

18.
Fragmentation of polyethers, such as poly(ethylene glycol) (PEG), poly(propylene glycol) and poly(tetramethylene glycol) was analyzed by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) using a quadrupole ion trap time-of-flight mass spectrometer (QIT-ToF). The Li adduct ion provided more abundant fragments than the Na and K adduct ions in the MS/MS spectra. A previous study had demonstrated four series fragments of hydroxyl-, vinyl- and formyl-terminated ions, as well as distonic cations, in high-energy fast atom bombardment MS/MS and MALDI collision-induced dissociation measurements of poly(ethylene glycol). In the present study, the low-energy MS/MS measurements using MALDI-QIT-ToF, showed hydroxyl-, vinyl- and formyl- terminated fragments with or without other fragment groups, but not distonic cations. The fragmentation depended on the types of polyethers examined. MS/MS measurements using MALDI-QIT-ToF are expected to allow structural characterization of unknown components of polyethers.  相似文献   

19.
A linear ion trap (LIT) with electrospray ionization (ESI) for top-down protein analysis has been constructed. An independent atmospheric sampling glow discharge ionization (ASGDI) source produces reagent ions for ion/ion reactions. The device is also meant to enable a wide variety of ion/ion reaction studies. To reduce the instrument's complexity and make it available for wide dissemination, only a few simple electronics components were custom built. The instrument functions as both a reaction vessel for gas-phase ion/ion reactions and a mass spectrometer using mass-selective axial ejection. Initial results demonstrate trapping efficiency of 70% to 90% and the ability to perform proton transfer reactions on intact protein ions, including dual polarity storage reactions, transmission mode reactions, and ion parking.  相似文献   

20.
The disulfide bond pattern of Trimeresurus stejnegeri lectin (TSL), a new member of the C-type lectin family, was determined by mass spectrometry. Four intrachain disulfide bonds of TSL, Cys(3)-Cys(14), Cys(31)-Cys(131), Cys(38)-Cys(133) and Cys(106)-Cys(123), and two interchain linkages, Cys(2)-Cys(2) and Cys(86)-Cys(86), were determined. Three strategies were used in this work. One intrachain (Cys(106)-Cys(123)) and one interchain (Cys(86)-Cys(86)) disulfide linkages were detected by standard MS methods. The disulfide bonds Cys(2)-Cys(2) and Cys(3)-Cys(14) were analyzed using a modified partial reduction procedure and MS/MS. The last two disulfide bonds were characterized by a MS/MS/MS technique. The strategies developed in this work could be applied more generally to detection of disulfide bond patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号