首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 170 毫秒
1.
热环境中粘贴压电层功能梯度材料梁的自由振动   总被引:5,自引:2,他引:3  
研究了上下表面粘贴压电层的功能梯度材料Euler-Bernoulli梁在升温及电场作用下的屈曲和自由振动行为.在精确考虑轴线伸长基础上,建立了压电功能梯度材料层合梁在热-电-机载荷作用下的几何非线性动力学控制方程.其中,假设功能梯度材料性质沿厚度方向按照幂函数连续变化,上下压电层为各向同性均匀材料.在小振幅和谐振动假设下,上述非线性偏微分方程组被转化为两套相互耦合的常微分方程组,即过屈曲问题的控制方程和过屈曲构形附近的线性振动控制方程.采用打靶法数值求解上述两个耦合的常微分方程边值问题,获得了在均匀电场和横向非均匀升温场作用下两端固定压电.功能梯度材料层合梁在屈曲前和过屈曲构型附近的自由振动响应.绘出了梁的过屈曲平衡路径以及前3阶固有频率随热、电载荷及材料梯度参数变化的特性曲线.结果表明,梁的前3阶频率在屈曲前随着温度升高而减小,在进入过屈曲后它们却随着温度升高而增加.通过施加电压在压电层产生拉应力可有效地提高粱的热屈曲临界载荷,从而提高其固有频率.  相似文献   

2.
基于经典梁理论,运用虚功原理和变分法推导了均匀变温场与横向均布荷载联合作用的功能梯度梁的几何非线性控制方程.考虑端部不可移夹紧边界条件,运用打靶法求解了该两点边值问题.当横向均布荷载为0时,考察了功能梯度梁的热屈曲临界升温和屈曲平衡路径.当均匀变温与横向均布荷载都不为0时,考察了功能梯度梁的荷载 挠度曲线.数值结果表明:随材料体积分数指数增加,梁的有量纲热屈曲临界升温显著减小,后屈曲变形显著增加;变温对功能梯度梁的荷载 挠度曲线影响非常显著.发现了功能梯度梁的双稳态构形及其转换现象,梁的最终平衡位形不但与变温及荷载参数有关,还与加载历程有关.  相似文献   

3.
横向非均升温下弹性梁的热过屈曲   总被引:6,自引:1,他引:5  
基于轴向可伸长梁的几何非线性理论和打靶法,研究了两端不可移简支弹性梁在横向非均匀分布升温场作用下的热弹性屈曲响应。着重分析了横向升温变化对热过屈曲变形的影响,给出了相应的特性曲线。数值结果表明,由于横向温度改变会产生热弯曲内力,因此过屈曲平衡路径与有初始变形梁的过屈曲平衡路径相似。  相似文献   

4.
加热弹性杆的热过屈曲分析   总被引:20,自引:4,他引:20  
基于轴线可伸长细杆的过屈曲变形几何理论,建立了两端轴向不可移的均匀加热直杆热弹性过屈曲行为的精确数学模型.这是一个包含杆轴线弧长在内的多未知函数的强非线性一阶常微分方程两点边值问题.采用打靶法和解析延拓法直接数值求解上述非线性边值问题,分别获得了两端横向简支和夹紧杆的热过屈曲状态解,给出了具有不同细长比杆的热过屈曲平衡路径.  相似文献   

5.
本文基于Reddy高阶剪切变形板理论导出Karman型非线性大挠度方程并用于层合板热后屈曲分析.分析中计及板初始几何缺陷和热效应.给出了四边简支.对称正交铺设层合板在均匀或非均匀抛物型热分布作用下的后屈曲分析.采用摄动-Galerkin混合法确定板的热屈曲载荷与热后屈曲平衡路径.同时讨论了横向剪切变形,板长宽比,铺层数以及初始几何缺陷等各种参数变化的影响.  相似文献   

6.
基于修正的偶应力理论和Timoshenko梁理论,应用变分原理建立了变截面二维功能梯度微梁的自由振动和屈曲力学模型.模型中包含金属组分和陶瓷组分的材料内禀特征尺度参数,可以预测微梁力学行为的尺度效应.采用Ritz法给出了任意边界条件下微梁振动频率和临界屈曲载荷的数值解.数值算例表明:微梁厚度减小时,无量纲一阶频率和无量纲临界屈曲载荷增大,尺度效应增强.锥度比对微梁一阶频率的影响与边界条件密切相关,同时,对应厚度和对应宽度锥度比的影响也有明显差异.变截面微尺度梁无量纲一阶频率随着陶瓷和金属的材料内禀特征尺度参数比的增加而增大,且不同边界条件时增大程度不同.厚度方向和轴向功能梯度指数对微梁的一阶频率和屈曲载荷也有显著的影响.  相似文献   

7.
从考虑损伤的粘弹性材料——一种卷积型本构关系出发,应用Timoshenko梁的基本变形假设,建立损伤粘弹性Timoshenko梁的静、动力学行为研究的数学模型.分析了损伤粘弹性Timoshenko梁在阶跃载荷作用下的准静态力学行为,在Laplace域中得到了挠度和损伤的解析表达式.应用数值逆变换技术,考察了材料粘性参数对梁的挠度和损伤的影响,得到不同时刻损伤和挠度随时间的变化曲线.  相似文献   

8.
沈惠申 《应用数学和力学》1997,18(12):1059-1073
本文基于Reddy高阶剪切变形板理论导出Karman型非线性大挠度方程并用于层合板热后屈曲分析,分析中计及板初始几何缺陷和热效应。给出了四边简支,对称正交铺设层合板在均匀或非均匀抛物型热分布作用下的后屈曲分析。采用摄动-Galerkin混合法确定板的热屈曲载荷与热后屈曲平衡路径。同时讨论了横向剪切变形。采用摄动-Galerkin混合法确定板的热屈曲载荷与热后屈曲平衡路径。同时讨论了横向剪切变形,板  相似文献   

9.
功能梯度材料杆的热后屈曲分析   总被引:1,自引:0,他引:1  
对两端不可移简支陶瓷-金属功能梯度材料(FGM)杆建立了在热载荷作用下的非线性控制微分方程,采用打靶法分析了由二氧化锆和Ti-6Al-4V两种材料组成的FGM杆的热后屈曲行为.首先给出了在均匀温度场中不同梯度指标的FGM杆的热后屈曲平衡路径,并与二氧化锆和Ti-6Al-4V两种均质材料杆的相应特性进行了比较,同时讨论了不同端部转角下梯度指标对FGM杆稳定性的影响;然后分别研究了在温差一定、下表面温度变化时和在下表面温度一定、温差变化时FGM杆的热后屈曲特性,也与两种均质材料杆的后屈曲特性进行了比较.  相似文献   

10.
李永  张志民 《应用数学和力学》2005,26(11):1307-1313
非均质、各向异性材料梯度多墙结构充分利用了材料性质连续、渐进、变化的物理力学性能,现已广泛应用于飞行机翼结构和汽车轻量化结构.在层合板屈曲理论的基础上,针对梯度多墙结构这一具体结构形式,采用当量刚度方法,建立了相应的本构关系和非线性屈曲控制方程,求解得到不同复杂边界条件及组合载荷下的屈曲临界载荷,通过试验分析验证,计算结果可以较好地满足工程设计.研究结果表明:梯度材料能有效地减小界面中的应力集中,减弱材料中初始缺陷的作用,从而不同程度地提高了材料的强度和韧性.  相似文献   

11.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

12.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

13.
This paper investigates the imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams subjected to in-plane temperature variation. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction and temperature-dependent. A generic imperfection function is used to model various possible imperfections, including sine type, global and localized imperfections. The governing equations are derived based on the first-order shear deformation beam theory and von-Kármán geometric nonlinearity. The differential quadrature method in conjunction with modified Newton–Raphson technique is employed to determine the thermal post-buckling equilibrium path of imperfect FG-CNTRC beams. Thermal buckling is treated as a subset problem. A parametric study is conducted to examine the effects of imperfection mode, half-wave number, location and amplitude on their thermal post-buckling performance. The influences of distribution pattern and volume fraction of carbon nanotubes, boundary conditions and slenderness ratio are discussed as well. The results indicate that the thermal post-buckling is highly sensitive to the imperfection mode, half-wave number, location as well as its amplitude. It is also shown that the clamped-clamped FG-CNTRC beam is more sensitive to imperfections than those with other boundary conditions whereas other parameters do not substantially affect the imperfection sensitivity of thermal post-buckling behaviour.  相似文献   

14.
In this work, buckling and post-buckling analysis of fluid conveying multi-walled carbon nanotubes are investigated analytically. The nonlinear governing equations of motion and boundary conditions are derived based on Eringen nonlocal elasticity theory. The nanotube is modeled based on Euler–Bernoulli and Timoshenko beam theories. The Von Karman strain–displacement equation is used to model the structural nonlinearities. Furthermore, the Van der Waals interaction between adjacent layers is taken into account. An analytical approach is employed to determine the critical (buckling) fluid flow velocities and post-buckling deflection. The effects of the small-scale parameter, Van der Waals force, ends support, shear deformation and aspect ratio are carefully examined on the critical fluid velocities and post-buckling behavior.  相似文献   

15.
Employing Euler–Bernoulli beam theory and the physical neutral surface concept, the nonlinear governing equation for the functionally graded material beam with two clamped ends and surface-bonded piezoelectric actuators is derived by the Hamilton’s principle. The thermo-piezoelectric buckling, nonlinear free vibration and dynamic stability for the piezoelectric functionally graded beams, subjected to one-dimensional steady heat conduction in the thickness direction, are studied. The critical buckling loads for the beam are obtained by the existing methods in the analysis of thermo-piezoelectric buckling. The Galerkin’s procedure and elliptic function are adopted to obtain the analytical solution of the nonlinear free vibration, and the incremental harmonic balance method is applied to obtain the principle unstable regions of the piezoelectric functionally graded beam. In the numerical examples, the good agreements between the present results and existing solutions verify the validity and accuracy of the present analysis and solving method. Simultaneously, validation of the results achieved by rule of mixture against those obtained via the Mori–Tanaka scheme is carried out, and excellent agreements are reported. The effects of the thermal load, electric load, and thermal properties of the constituent materials on the thermo-piezoelectric buckling, nonlinear free vibration, and dynamic stability of the piezoelectric functionally graded beam are discussed, and some meaningful conclusions have been drawn.  相似文献   

16.
Present research deals with the thermal buckling and post-buckling analysis of the geometrically imperfect functionally graded tubes on nonlinear elastic foundation. Imperfect FGM tube with immovable clamped–clamped end conditions is subjected to thermal environments. Tube under different types of thermal loads, such as heat conduction, linear temperature change, and uniform temperature rise is analyzed. Material properties of the FGM tube are assumed to be temperature dependent and are distributed through the radial direction. Displacement field satisfies the tangential traction free boundary conditions on the inner and outer surfaces of the FGM tube. The nonlinear governing equations of the FGM tube are obtained by means of the virtual displacement principle. The equilibrium equations are based on the nonlinear von Kármán assumption and higher order shear deformation circular tube theory. These coupled differential equations are solved using the two-step perturbation method. Approximate solutions are provided to estimate the thermal post-buckling response of the perfect/imperfect FGM tube as explicit functions of the various thermal loads. Numerical results are provided to explore the effects of different geometrical parameters of the FGM tube subjected to different types of thermal loads. The effects of power law index, springs stiffness of elastic foundation, and geometrical imperfection parameter of tube are also included.  相似文献   

17.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号