首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both particle packed (25 cm x 0.46 cm I.D. SUPELCOSIL 5 microm C18) and monolithic type (10 cm x 0.46 cm I.D. Merck Chromolith Performance C18) reversed-phase substrates were dynamically coated with a carboxybetaine type zwitterionic surfactant ((dodecyldimethyl-amino) acetic acid) and investigated as stationary phases for use in zwitterionic ion chromatography (ZIC). Investigations into eluent concentration and pH were carried out using KCl eluents containing 0.2 mM of the carboxybetaine surfactant to stabilise the column coatings. It was found that eluent concentration decreased anion retention whilst simultaneously increasing peak efficiencies, which may be due to the dissociation of intra- and inter-molecular salts of the carboxybetaine surfactant under higher ionic strength conditions. The Effect of eluent pH was an increase in anion retention with decreased eluent pH due to the increased protonation of the weak acid terminal group of the carboxybetaine, causing both a relative increase in the positive charge of the stationary phase and less repulsion of the anions by the dissociated weak acid group. The carboxybetaine-coated monolithic phase was applied to rapid anion separations using elevated flow rates and flow rate gradients.  相似文献   

2.
A 0.46 cm x 10.0 cm silica monolith column was modified through the in situ covalent attachment of lysine (2,6-diaminohexanoic acid) groups. Due to the zwitterionic nature of the resultant stationary phase, the modified monolithic column contained both cation and anion exchange capacity. In the case of cation exchange, the capacity was found to be relatively low at between 5 and 6.5 micromoles Me2+ per column. However, as expected, the lysine monolith exhibited a higher anion exchange capacity at 12-13 micromoles A- per column (at pH 3.0), which was found to be dependent upon column pH, due to the dissociation of the weak acid carboxylic acid groups. High-performance separations of transition metal cations and inorganic anions were achieved using the modified monolith, with the effects of eluent concentration, pH and flow rate evaluated. Using elevated flow rates of up to 5 mL/min the separation of nitrite, bromate, bromide, nitrate, iodide and thiocyanate was possible in approximately 100 s with peak efficiencies of between 50 and 100,000 N/m and retention time %RSD of under 0.3%.  相似文献   

3.
Short permanently coated reversed-phase silica based monolithic columns have been investigated for the rapid separation of inorganic anions and cations. One 2.5 x 0.46 cm column was permanently coated with didodecyldimethylammonium (DDAB), for anion analysis; and a second 5.0 x 0.46 cm column was coated with dioctylsulphosuccinnate (DOSS), for cation analysis. The use of a single combined eluent of 2.5 mM phthalate/1.5 mM ethylenediamine, at flow rates of between 4.0 and 8.0 mL/min, resulted in the rapid separation of 8 anions (in under 100 s) and 5 cations (in under 100 s) on the above columns when used individually, with detection limits for common anions ranging from approximately 0.25 to 5 mg/L, and between 2.5 and 50 mg/L for alkaline earth metals, by direct and indirect conductivity detection, respectively. However, with both columns subsequently connected in parallel, with the eluent delivered using a flow splitter from a single isocratic pump, the simultaneous analysis of anions and cations was also possible, based on a single conductivity detector. The potential of this system for the rapid, complete screening of water samples for multiple common anions and cations is shown.  相似文献   

4.
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.  相似文献   

5.
Ion chromatography on a 4.0-mm-long (3.0 mm ID) ion exchange column is presented. Using a 10 mM phosphate buffer (pH 2.22) the separation of up to six UV-absorbing anions was obtained using the microcolumn, containing 5 microm RP support (Phenomenex Gemini) coated with the zwitterionic surfactant, (N-dodecyl-N,N-dimethylammonio) undecanoate. The short analytical column facilitated the application of a flow gradient programme over the flow range 0.3-5 mL/min resulting in optimum resolution of nitrite, nitrate, benzoate, iodide, thiocyanate and trichloroacetate in less than 10 min. The effect of both eluent concentration and pH on the retention of six selected anions was investigated, showing a strong pH capacity dependence. The microcolumn was found to exhibit no selectivity towards chloride and so was well suited to the analysis of saline samples. To illustrate this, the rapid analysis of a concentrated iodized table salt sample (20 g/L) was carried out. Following standard addition, a concentration of 3.55 +/- 0.05 microg iodide/g and 1.05 +/- 0.02 microg iodate/g in the solid salt sample was determined.  相似文献   

6.
Rapid ion chromatographic separations of small inorganic anions are performed on columns packed with high-pH resistant Zorbax Extend-C18 1.8 microm silica particles. Seven anions (iodate, chloride, nitrite, bromide, nitrate, phosphate, sulphate) are separated with 1.3 and 2 cm long x 0.46 cm I.D. C18 columns coated with the surfactant didodecyldimethylammonium bromide (DDAB). A 40 s separation is achieved at 2 mL/min with a 2.5 mM 4-hydroxybenzoic acid eluent at pH 10. Finally, the DDAB removal procedure is improved to eliminate the pressure build-up caused by precipitation of the surfactant in the column upon uncoating.  相似文献   

7.
In this paper, a simple method for the separation and determination of common inorganic anions by fast ion-exchange chromatography, using a modified short (25 mm x 4.6 mm) monolithic column, is reported. Coating the column with a cationic surfactant, cetylpyridinium chloride (CPC), the isocratic separation of some inorganic anions in minutes was possible, by direct or indirect UV detection. The coated column demonstrated excellent stability over time, even at a high flow-rate, giving retention times with an average relative standard deviation of 1.3% for over 10 consecutive runs. The developed column exhibited unusual selectivity for common anions, was successfully applied to the rapid analysis of inorganic anions of food samples, river water and factory waste water samples.  相似文献   

8.
The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.  相似文献   

9.
An RP monolithic column coated with an amphoteric carboxybetaine type surfactant has been used with a combined triple eluent concentration, pH and flow gradient ion chromatography technique for the simultaneous separation of up to 18 nucleotides, nucleosides and nucleobases. The separation of up to eight precursors on a 1 cm long monolithic microcolumn using the combined gradient approach is also shown. The method was applied to the separation of the above nucleic acid precursors in perchloric acid extracts of yeastolates samples.  相似文献   

10.
The effects of salts (NaCl, NaClO4, MgCl2, CeCl3) added to background electrolyte (BGE) solutions (10 mmol L(-1) sodium phosphate, pH 7.2) on electroosmotic flow (EOF) and the separation selectivity of anions (chloride, bromide, iodide, nitrite, nitrate, chlorate, thiocyanate, iodate, chromate, and molybdate ion) by capillary electrochromatography using the zwitterionic surfactant 3-(N,N-dimethylmyristylammonio)propane sulfonate (C14N3S) as a pseudo-stationary phase were investigated. There are two mechanisms affecting the separations: 1. the cations and anions of the added salts interact with the zwitterionic surfactant to varying degrees, thus changing the overall retention of the analytes; and 2. they change the EOF and the resulting apparent mobilities. It was shown that a BGE containing perchlorate and a low concentration of zwitterionic surfactant (2 mmol L(-1)) gave a stable and reproducible EOF and the concentration of perchlorate could be used to manipulate the separation selectivity for polarizable anions, such as iodide and thiocyanate. These effects are discussed in terms of measured association constants describing the interaction of anions and cations with the zwitterion.  相似文献   

11.
研究了用硅胶整体柱和直接电导检测的离子相互作用色谱快速分析常见无机阴离子的方法。实验采用氢氧化四丁铵和邻苯二甲酸为淋洗液,讨论了包括淋洗液浓度、流速和pH对分离的影响。当以1.5 mmol/L氢氧化四丁铵和1.1 mmol/L邻苯二甲酸为淋洗液(pH 5.5),流速6 mL/min时,可以在1 min内分离Cl-、NO2-、Br-、NO3-、ClO3-、SO42-和I-7种阴离子。方法的检出限为0.3~1.9 mg/L,峰面积、峰高的相对标准偏差(RSD,n=5)分别为0.4%~2.2%和0.1%~1.5%。将该法用于测定矿泉水和地下水中的阴离子,加标回收率在97.9%~100.3%之间。  相似文献   

12.
The inability to separate fluoride, phosphate and sulfate by electrostatic ion chromatography (EIC) was overcome by using an ODS silica column coated with mixed zwitterionic-cationic surfactants as the stationary phase. The best results were obtained using the zwitterionic surfactant, 3-(N,N-dimethylmyristylammonium)-propanesulfonate (C19H41NO3S), and the cationic surfactant, myristyltrimethylammonium, CH3(CH2)13N+(CH3)3, in a 10:1 molar ratio in the column coating solution. With a dilute solution of sodium tetraborate as the eluent the model analyte anions were completely separated in the following elution order: F, HPO42-, SO42-, Cl-, NO2-, Br-, NO3-. The very early elution of phosphate and sulfate is most unusual and is unique to this system. Detection limits better than 1.1 x 10(-4) mM and linear calibration plots up to 7.0 mM were obtained with a suppressed conductivity system.  相似文献   

13.
A two-dimensional ion chromatography (2D-IC) approach has been developed which provides greater resolution of complex samples than is possible currently using a single column. Two columns containing different stationary phases are connected via a tee-piece, which enables an additional eluent flow and independent control of eluent concentration on each column. The resultant mixed eluent flow at the tee-piece can be varied to produce a different eluent concentration on the second column. This allows analytes strongly retained on the first column to be separated rapidly on the second column, whilst maintaining a highly efficient, well resolved separation of analytes retained weakly on the first column. A group of 18 inorganic anions has been separated to demonstrate the utility of this approach and the proposed 2D-IC method provided separation of this mixture with resolution of all analytes greater than 1.3. Careful optimisation of the eluent profiles on both columns resulted in run times of less than 28 min, including re-equilibration. Separations were performed using isocratic or gradient elution on the first column, with an isocratic separation being used on the second column. Switching of the analytes onto the second column was performed using a gradient pulse of concentrated eluent to quickly elute strongly retained analytes from the first column onto the second column. The separations were highly repeatable (RSD of 0.01–0.12% for retention times and 0.08–2.9% for peak areas) and efficient (typically 8000–260,000 plates). Detection limits were 3–80 ppb.  相似文献   

14.
A novel monolithic silica column with zwitterionic stationary phase was prepared by in-situ covalent attachment of phenylalanine to a 3-glycidoxypropyltriethoxysilane-modified silica monolith. Due to the zwitterionic nature of the resulting stationary phase, the density and sign of the net surface charge, and accordingly the direction and magnitude of electroosmotic flow in this column during capillary electrochromatography could be manipulated by adjusting the pH values of the mobile phase. CEC separations of various acidic and basic compounds were performed on the prepared column in anodic and weakly cathodic EOF modes, respectively. The peak tailing of basic compounds in CEC on a silica column could be alleviated at optimized buffer compositions. Besides the electrophoretic mechanism and weak hydrophobic interaction, weak cation- and anion-exchange interactions are also involved in the separations of acids and bases, respectively, on the zwitterionic column.  相似文献   

15.
A new strategy to exfoliate inorganic layered double hydroxide (LDH) solids to micrometer-sized and positively-charged nanosheets in aqueous solution is presented. The procedure involves intercalation of zwitterionic surfactant into the decarbonated LDH by ion exchange, followed by simply stirring the surfactant-intercalated LDH in an aqueous solution of pH?=?2. Since the charge of zwitterionic surfactant can be varied from anionic to cationic by adjusting the pH, the zwitterionic ions present in the interlayer were converted to cationic at pH?=?2, resulting in the exfoliation of LDH by electrostatic repulsion. The delaminated LDHs nanosheets were confirmed by XRD, TEM, and AFM analyses. This simple method did not need reflux at high temperature, overcame the drawback of using organic solvents, and even resulted in a stably colloidal dispersion of nanosheets.  相似文献   

16.
The utility of cation chromatography has been developed by the application of -histidine as a multiprotic and dipolar (zwitterionic) eluent component. The method simplifies the cation analysis. The chromatographic characteristics of this system were studied in detail with a view to determining the selectivity and the mechanism by which the cations (Na+, K+, Mg2+, Ca2+) are retained. Complete separations were observed in the isocratic run over the eluent concentration range 3.0–6.0 mM at pH below 2.0. Sensitive detection was achieved using suppressed conductivity at the pH of isoelectric point of the histidine. Retention equations are derived for mono- and divalent cations eluted from ion-exchange separation column with multiple ionic eluents. The theory is based on the extension of ion-exchange equilibrium by protonation equilibria. The selectivity data for analyte and eluent species are determined using the model from the experimental retention data by computer-assisted iterative calculations. The model was utilized to predict retention data. The results in three-dimensional retention surfaces together with species distribution graphs are presented.  相似文献   

17.
Determination of trace anions in organic solvents.   总被引:2,自引:0,他引:2  
Ion chromatography along with matrix elimination was used to reliably determine trace levels of anionic contaminants in organic solvents. A 5-ml sample volume was injected directly into the instrument without any sample pretreatment. High-purity deionized water was used to deliver the sample to a preconcentration column, where the anions of interest were retained while the organic matrix was rinsed to waste. A sodium carbonate eluent eluted concentrated anions from the preconcentration column and separated them on a 2-mm pellicular anion-exchange column. The separated anions were detected by suppressed conductivity. This method was used to determine the anionic contaminants of isopropanol, acetone and N-methylpyrrolidone. Method detection limits for chloride, nitrate, sulfate and phosphate were all lower than 1 microg/l.  相似文献   

18.
磷酸根离子在阴离子交换树脂上的保留行为及其机理探讨   总被引:2,自引:0,他引:2  
丁明玉  陈培榕 《色谱》1998,16(6):516-519
首次发现磷酸根离子在阴离子交换柱上以两个色谱峰流出。在研究磷酸根离子的保留行为的基础上,提出了H2PO-4在固定相中进一步离解的保留机理,即H2PO-4在与阴离子交换树脂交换基进行离子交换的过程中,由于树脂交换基和淋洗离子的电荷相互作用促使一部分H2PO-4进行第2级离解。由于H2PO-4和HPO2-4在阴离子交换树脂上的保留值不同,导致磷酸根离子出现“双峰”。  相似文献   

19.
A silica monolith column (Merck Chromolith, 100 mm x 4.6 mm) has been coated with Dionex AS9-SC latex nanoparticles to convert the column into an anion-exchange stationary phase. For comparison purposes, a reversed-phase silica monolith was also converted into an anion-exchange column by coating with the cationic surfactant didodecyldimethylammonium bromide (DDAB). Separations of common inorganic anions were carried out using 7.5 or 5.0 mM 4-hydroxybenzoic acid at pH 7.0 along with suppressed conductivity detection. Direct comparisons were then made between the two columns in terms of selectivity, efficiency and stability. The latex-coated column was on average 50% more efficient than the DDAB-coated column. A 10% decrease in retention times was observed on the DDAB column over 11 h of continuous eluent flow, while the latex coating exhibited <1% change in retention even after 2.5 months of periodic use.  相似文献   

20.
A carboxybetaine-type zwitterionic stationary phase obtained by immobilizing Mitsubishi Reagent EF-700 (C(8)F(17)SO(2)NHC(3)H(6)N(+) (CH(3))(2)-C(2)H(4)-COO(-)) onto a reversed-phase column was used for chromatographic separation of ions. When aqueous electrolyte solutions having higher pH values (>8) were used as eluents, the model analyte ions (NO(2)(-), H(2)PO(4)(-), Cl(-), Br(-), NO(3)(-), ClO(3)(-), I(-) and SCN(-)) were co-eluted and appeared at the void volume of this HPLC system. However, when aqueous electrolyte solutions having lower pH values (<5.5) were used as eluents, these anions were well retained and separated. Furthermore, when acetate buffers (NaAc/HAc) were used as eluents, plots of log k' (k', retention factor) versus pH of eluents (at constant [NaAc+HAc]), and log k' versus log [NaAc+HAc] (at constant pH), were linear with negative slopes. Breakthrough curves for acid solutions obtained using conductivity detection showed that H(+) ions and their conjugate anions were both retained on the stationary phase and the degree of binding was found to be independent of the acid species used. The degree to which the eluent cation was bound onto the carboxylate functionality of the zwitterion was found to exert a major effect on the retention of analyte anions. A strongly bound cation, such as H(+), reduced electrostatic repulsion effects exerted by the carboxylate functionality on analyte anions, so that they could freely access the quaternary ammonium sites on the zwitterion. It is concluded based on these experimental results that both the charges on the zwitterionic stationary phase make meaningful contributions to the separation of the analyte ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号