首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
用自由基溶液聚合的方法制备了聚(甲基丙烯酸β─羟乙酯)(PHEMA)和一系列不同组成的苯乙烯-丙烯酰胺共聚物(PSAm).利用DSC,IR方法研究了PSAm/PHEMA共混体系的相容性.观察到不同组成的PSAm与PHEMA等重量比混合时,只有Am含量在47~57mol%范围内的PSAm与PHEMA的共混物相容,即共混体系表现出一个“miscibilitywindow”.应用平均场理论计算了上述共混体系的相互作用参数,结果表明共聚物内不同链段间的拒斥力(repulsion)是使PSAm/PHEMA共混体系产生“miscibilitywindow”的主要原因.  相似文献   

2.
用自由基溶液聚合的方法制备了聚(甲基丙烯酸β-羟乙酯)(PHEMA)和一系列不同组成的苯乙烯-丙烯酰胺共聚物(PSAm)。利用DSC,IR方法研究了PSAm/PHEMA共混体系的相容性。观察到不同组成的PSAm与PHEMA等重量比混合时,只有Am含量在47-57mol%范围内的PSAm与PHEMA的共混物相容,即共混体系表现出一个“miscibility window”。应用平均场理论计算了上述共  相似文献   

3.
PC/PBT共混体系的研究:(Ⅱ)PC,PBT熔融共混时的相容性   总被引:3,自引:0,他引:3  
采用DSC测定了一系列PC/PBT熔融共混物的Tg,结果显示PC、PBT是部分相容的两相体系,PC、PBT之间的酯交换反应有利于相容性的提高。通过对PC、PBT两相中各组分表观质量分数的计算,发现PC溶于PBT的能力要比PBT溶于PC的能力大。通过对PC、PBT相互作用参数χ12的计算,发现在所研究的范围内(PC含量为30~70%)PC、PBT之间的相互作用参数χ12略大于其临界相互作用参数(χ12)c,表明PC、PBT在熔融共混时会发生相分离,亦即形成部分相容的两相体系  相似文献   

4.
运用DSC物理老化和FTIR谱带分离及拟合技术,对聚氨酯(TPU)硬段模型聚合物(HM)和苯乙烯-丙烯腈共聚物(SAN)的共混体系进行了研究。实验结果表明,HM/SAN是一个相容体系,体系的相容性来源于两组分聚合物之间的特殊相互作用。SAN的加入消弱了HM中羰基和氨基间的氢键相互作用,这一结果对阐明TPU/SAN共混体系相容性本质提供了重要的依据。  相似文献   

5.
采用DMA和TEM系统研究了聚丁二烯-聚甲基丙烯酸甲酯的嵌段共聚物(PBD-b-PMMA)与聚氯乙烯(PVC)共混体系的相容性问题。结果表明:PVC/PBD-b-PMMA共混体系具有部分相溶性。相容的程度与共混体系的组成、组分聚合物的分子量以及共聚物中PBD和PMMA嵌段的比例密切相关。  相似文献   

6.
甲基丙烯酸甲酯 甲基丙烯酸共聚物(P(MMA MAA))与低分子量或高分子量梯形聚苯基硅倍半氧烷(PPSQ)的共混物经原位聚合法制成.用光学透明法、荧光光谱、DSC等技术研究了该共混体系的相容性及组分间的相互作用及结构转变.结果表明,当PPSQ含量较小时,由于PPSQ与P(MMA MAA)间存在着较强的氢键作用,该共混体系在一定配比下相容,且低分子量PPSQ与P(MMA MAA)间的相容性较好.当PPSQ的含量≤1%时,PPSQ的加入对该共混物的Tg影响不大,但其Tf随PPSQ含量增加而增大.此外,还测试了P(MMA MAA)/PPSQ原位共混物的硬度及冲击强度.  相似文献   

7.
嵌段共聚物PI-b-PMMA和不同羟基含量的改性聚苯乙烯PS(OH)组成的共混物因PM-MA嵌段和PS(OH)间的玻璃化转变相当接近而不能用通常的DSC法判别其相容性。通过共混物的焓弛豫,得到相容性明确的DSC判据,且与电镜观察结果一致。共混物中的Tg增宽效应可通过江明等提出的链密度梯度模型解释。  相似文献   

8.
嵌段共聚物PI-b-PMMA和不同羟基含量的改性聚苯乙烯PS(OH)组成的共混物因PM-MA嵌段和PS(OH)的玻璃化转变相当接近而不能用通常的DSC法判别其相容性,通过共混物的焓弛豫,得到相容性明确的DSC判据,且与电镜观察结果一致,共混物的Tg增宽效应可通过江明等提出的链密度梯度模型解释。  相似文献   

9.
PC/ABS及PC/ABS/PE-g-MAH共混体系相容性的研究   总被引:18,自引:1,他引:17  
研究了聚碳酸酯与ABS(PC/ABS)及PC/ABS与马来酸酐接枝聚乙烯共聚物(PC/ABS/PE-g-MAH)共混体系的力学性能和应力开裂性能。用DSC和SEM研究了共混体系的相容性。结果表明:ABS的加入能提高PC的冲击强度,ABS的含量及品种影响PC/ABS合金的力学性能,ABS能提高PC的耐溶剂应力开裂性能。PC/ABS/PE-g-MAH共混体系的力学性能和相容性优于PC/ABS共混体系,  相似文献   

10.
聚己内酯(PCL)和丙烯腈-苯乙烯无规共聚物(SAN)的共混物的相容性和形态曾被广泛研究[1~4].PCL的结晶形成球晶结构,其和SAN共混,在熔体中结晶时不但可观察到Mal-tese十字消光,而且存在非常明显的明暗交替的周期性环带状结构,称之为“环...  相似文献   

11.
Direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate), (PC/PMMA/PVAc), ternary blends have been performed. The PC/PMMA/PVAc ternary blends were obtained by coalescing from their common γ-cyclodextrin-inclusion compounds (CD-ICs), through the removal of the γ-CD host (coalesced blend), and by a co-precipitation method (physical blend). The coalesced ternary blend showed different thermal behaviors compared to the co-precipitated physical blend. The stability of PC chains decreased due to the reactions of CH3COOH formed by deacetylation of PVAc above 300 °C, for both coalesced and physical blends. This process was more effective for the physical blend most likely due to the enhanced diffusion of CH3COOH into the amorphous PC domains, where it can further react producing low molecular weight PC fragments bearing methyl carbonate chain ends. The decrease in thermal stability of PC chains was less significant for the coalesced ternary blend indicating that the diffusion of CH3COOH was either somewhat limited or competed with intermolecular reactions between PMMA and PC and between PMMA and PVAc, which were detected and were associated with their close proximity in the intimately mixed coalesced PC/PMMA/PVAc ternary blend.  相似文献   

12.
In this study, we successfully report an intimate ternary blend system of polycarbonate (PC)/poly(methyl methacrylate) (PMMA)/poly(vinyl acetate) (PVAc) obtained by the simultaneous coalescence of the three guest polymers from their common γ‐cyclodextrin (γ‐CD) inclusion compound (IC). The thermal transitions and the homogeneity of the coalesced ternary blend were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The observation of a single, common glass transition strongly suggests the presence of a homogeneous amorphous phase in the coalesced ternary polymer blend. This was further substantiated by solid‐state 13C NMR observation of the T(1H)s for each of the blend components. For comparison, ternary blends of PC/PMMA/PVAc were also prepared by traditional coprecipitation and solution casting methods. TGA data showed a thermal stability for the coalesced ternary blend that was improved over the coprecipitated blend, which was phase‐segregated. The presence of possible interactions between the three polymer components was investigated by infrared spectroscopy (FTIR). The analysis indicates that the ternary blend of these polymers achieved by coalescence from their common γ‐CD–IC results in a homogeneous polymer blend, possibly with improved properties, whereas coprecipitation and solution cast methods produced phase separated polymer blends. It was also found that control of the component polymer molar ratios plays a key role in the miscibility of their coalesced ternary blends. Coalescence of two or more normally immiscible polymers from their common CD–ICs appears to be a general method for obtaining well‐mixed, intimate blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4182–4194, 2004  相似文献   

13.
Miscibility in blends of poly(styrene-co-acrylonitrile) (PSAN) with several other polymeric components has been investigated over a range of compositions by means of thermal analysis and transmission electron microscopy. Systems in vestigated were (i) PSAN/polycarbonate (PC), (ii) PSAN/styrene-maleic anhydride-methyl methacrylate terpolymer (S/MA/MM), (iii) PSAN/polynorbornene nitrile (PNN), and (iv) PSAN//S/MA/MM//PC. PSAN/PC was demonstrated to be partially miscible in all proportions over the PSAN copolymer composition range 23–70 wt % AN, while the miscibility or lack thereof of PSAN//S/MA/MM depended on the relative AN and MA contents of the PSAN and S/MA/MM, respectively. In contrast, PSAN/PNN was found to be immiscible in all proporations, while the system PSAN//S/MA/MM//PC was shown to be partially miscible. Deformation studies performed on rubber-modified versions of these blends defined deformation mode and microstructural deformation behavior. Dual extensometer tensile testing yielded relative contributions of crazing and of plastic flow, which correlated both with blend composition and with toughness. TEM observations of deformed specimens indicated a deformation process in the multiphase matrix blends consisting of craze initiation and propagation in the rubber-containing phase, craze arresting in the ductile second matrix phase, and coordinated extensive deformation of the matrix phases and of the rubber particles, where the ability to support the latter coordinated forms of deformation were observed to increase with increasing proportion of plastically deforming phase.  相似文献   

14.
Morphology and reaction mechanisms were probed on a model reactive ternary blend system of polycarbonate (PC), poly(methyl methacrylate) (PMMA), and diglycidylether of bisphenol-A (DGEBA) epoxy by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Molecular interactions/reactions between the components in the blends after heating treatments are discussed. It was found that reactions took place among the components and that an interpenetrating network was built. The possible reaction mechanisms and the resulting structures after the heating treatments were probed. In the blends, PC and DGEBA reacted to form a network, while PMMA remained free. The semiinterpenetration, however, did not result in a network interlocked into a homogeneous state. The single Tg of the heated ternary DGEBA/PC/PMMA blends actually did not reflect a homogeneous interpenetrating network. Due to relatively small PMMA domains, the ternary blend network exhibited a single Tg. Upon etching the PMMA domains from the blend by acetone, a clearly interpenetrating network of reacted PC and epoxy was exposed and confirmed. The reactions leading to such a morphology are discussed with experimental evidence. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
聚甲基丙烯酸甲酯与聚醋酸乙烯酯共混的红外光谱研究   总被引:2,自引:0,他引:2  
用红外光谱(FTIR)研究了聚甲基丙烯酸甲酯(PMMA)与聚醋酸乙烯酯(PVAc)共混体系相容性,在160℃以上共混体系发生相分离;分相体系与非分相体系的FTIR谱明显不同;共混体系的FTIR谱不能从两统组分红外光谱简单加和得到;结果表明大分子构象发生了变化,PMMA/PVAc体系相容可能是大分子构象熵变所致。  相似文献   

16.
吴强  杜淼  彭懋  左敏  郑强 《高分子学报》2007,(3):223-229
采用小角激光光散射(SALLS)并结合动态流变学方法,考察了气相法二氧化硅(SiO2)粒子的加入对聚甲基丙烯酸甲酯/苯乙烯-丙烯腈无规共聚物(PMMA/SAN)共混体系相行为的影响,得到了添加SiO2粒子前后的相图,发现SiO2粒子对基体相行为的影响与基体的组成有关.对PMMA/SAN(60/40)体系,加入SiO2粒子后相分离温度上升,但并未改变相分离机理,仍为亚稳单相分解过程(spinodal decomposition,SD);而对于PMMA/SAN(30/70)体系,加入SiO2粒子后却降低了体系的相分离温度.该现象可能是SiO2粒子和基体组分界面间组成与PMMA/SAN共混物基体组成的差异造成的.  相似文献   

17.
将改进的Flory状态方程理论(EOS)引入含“分子内链段排斥性相互作用”的高分子共混物中,研究含无规共聚物的三元共混体系聚苯乙烯(PS)/聚甲基丙烯酸甲酯(PMMA)/聚苯乙烯-丙烯腈(SAN)无规共聚物的相行为,建立相应的适用于含无规共聚物三元共混体系Spinodal方程.用PS、PMMA、PAN的特征参数及其链段间相互作用参数分别计算相应共聚物的特征参数,由二元相互作用模型计算均聚物-共聚物间的相互作用能参数.在运用EOS理论研究三元均聚物共混体系相行为基础上,进一步预测PS/PMMA/SAN体系的相行为,计算并绘制不同温度下的Spinodal曲线并进行实验验证,理论计算与实验结果吻合.结果表明,EOS理论可以克服经典平均场理论的缺陷,成功描述含分子内排斥作用共混体系相行为与共聚物组成及温度之间的关系.  相似文献   

18.
含无规共聚物共混体系的相容性研究正在成为近年来的研究热点 ,因为相容的驱动力来自共聚物分子内不同单体链段间的排斥性相互作用 [1~ 3] .目前研究这类体系还主要采用过份简化的 F- H平均场理论 ,用旨在克服平均场理论缺陷的 Flory状态方程 ( EOS)理论仅局限于研究二元共聚物共混体系[4~ 8] .与三元共混体系相比 ,用 EOS理论预测含两个无规共聚物三元体系相行为尚需确定共聚物 -共聚物间的二元参数 sj/si,Xij和 Qij.若用 Ax B1- x和 Cy D1- y分别代表共聚物 1和 2 ,则 A,B,C,D代表相应共聚物中的单体单元 ,x,y分别是 1和 2的共…  相似文献   

19.
Poly(methyl methacrylate)(PMMA)/polystyrene(PS)/carbon black(CB)and poly(ethyl methacrylate)(PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect.In both PMMA/PS/CB and PEMA/PS/CB ternary composite films,the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient,which is also confirmed by SEM images.The conductivity of the films was investigated,and the percolation threshold(¢c)of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation.Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect.However,due to the double emulsion structure of PEMA/PS polymer blends,the PEMA/PS/CB ternary composite films(PEMA/PS=50/50)showed a higher¢c,even CB only located in PS phase,which conflicts with the double percolation effect.A schematic diagram combined with SEM images was proposed to explain this phenomenon.  相似文献   

20.
This work was focused on the influence of the morphology of composite natural rubber (NR)-based particles on the toughness of poly(styrene–co-acrylonitrile) (PSAN) blends. In order to be suitable for the reinforcement of PSAN blends, the NR-based particles were coated with a shell of crosslinked poly(methylmethacrylate) (PMMA). Furthermore, polystyrene (PS) subinclusions were introduced into the NR rubber core. PSAN blends were prepared by adding the wet latex directly into a twin screw-extruder. This new method allowed even tacky pure rubber particles to be dispersed as shown by transmission electron photomicrographs which confirmed the integrity of the soft particles after mixing. Solid NR particles or NR-based latex particles containing rigid PS subinclusions and no hard shell did not offer any impact improvement to PSAN. Only NR-based core–shell particles containing at least 25% PMMA in the shell toughened the brittle matrix. Prevulcanized NR-based latex particles which do not cavitate easily were less effective. Core–shell particles containing PS subinclusions within a natural rubber core allowed more effective use of the rubber phase. From the fracture surface morphology the failure mechanisms of PSAN blends containing the different composite NR particles could be deduced. Monodisperse poly(n-butylacrylate)-based core–shell particles were too small to toughen PSAN. However, a similar dependence of the fracture mechanisms on the morphology of the incorporated toughening agent could be established by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号