首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid chromatographic-mass spectrometry (LC/MS) assay method was developed for the determination of amiodarone and desethylamiodarone in rat specimens. Analytes were extracted using liquid-liquid extraction in hexane. The LC/MS system consisted of a Waters Micromass ZQtrade mark 4000 spectrometer with an autosampler and pump. A C(18) 3.5 microm (2.1 x 50 mm) column heated to 45 degrees C was used for separation. The mobile phase consisted of methanol and 0.2% aqueous formic acid pumped at 0.2 mL/min as a linear gradient. Components eluted within 12 min. The concentrations of ethopropazine (internal standard), desethylamiodarone and amiodarone were monitored for m/z of 313.10, combination of 546.9 and 617.73, and 645.83, respectively. In plasma (0.1 mL), linearity was achieved between the peak area ratios and concentrations over the range of 2.5-1000 ng/mL for both amiodarone and desethylamiodarone (r(2) > 0.999). The intraday and interday CV were equal or less than 18%, and mean error was <12%. Similarly, in homogenates containing 0.1 g of rat tissue, linearity was observed in standards ranging from 5 to 5000 ng/g. The method was successfully used to measure tissue and plasma concentrations of drug. The validated lower limit of quantitation was 2.5 ng/mL for drug and metabolite, based on 0.1 mL of plasma.  相似文献   

2.
Summary A procedure for the rapid, quantitative isolation of amiodarone and its main metabolite (desethylamiodarone) from plasma with SEP-PAK silica cartridges is described together with a sensitive high performance liquid chromatographic assay for the quantitative determination of the drugs.The recovery of amiodarone and its metabolite was greater than 80% over an investigated range of 0.1–5g/ml of plasma and the limit of quantitation by the assay was 50 ng/ml of plasma.The column extraction of amiodarone and its metabolite coupled with the chromatographic versatility of the method make it suited for either detailed pharmacokinetic studies and routine plasma analysis of amiodarone.  相似文献   

3.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

4.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

5.
A HPLC-UV method has been developed for assaying rifampicin in plasma and liver. The assay involved a liquid-liquid extraction procedure with dichloromethane-pentane (1:1). An Ultrabase-C18 column and a simple mobile phase consisting of a water (pH 2.27)-acetonitrile (40:60, v/v) mixture were used. The flow-rate was 1 ml/min and the effluent was monitored at 333 nm. Results from the HPLC analyses showed that the assay method is linear in the ranges 0.1-1 and 1-50 microg/ml for plasma, and 0.6-40 microg/g for liver. Intra- and inter-day R.S.D. were below 15% for all the sample types. Recoveries averaged 83 and 95% for plasma and liver, respectively. The method is being successfully applied to determine rifampicin in plasma and liver samples taken during pharmacokinetic studies in rats.  相似文献   

6.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

7.
A reversed-phase high-performance liquid chromatographic (HPLC) assay for calycosin-7-O-beta-D-glucopyranoside in rat plasma and urine with solid-phase extraction (SPE) was developed. Rutin was employed as an internal standard. The mobile phase consisted of acetonitrile-water (16:84, v/v) at a flow rate of 1.0 mL/min. Detection was set at 280 nm. The limit of quantitation of calycosin-7-O-beta-D-glucopyranoside was 0.2 microg/mL in both plasma and urine. The standard curve was linear from 0.2 to 10.0 microg/mL in plasma, and 0.2 to 5.0 microg/mL in urine. Both intra- and inter-day precision of the calycosin-7-O-beta-d-glucopyranoside were determined and their RSD did not exceed 10%. The method was successfully applied to the analysis of samples obtained from a basic pharmacokinetic study, in which calycosin-7-O-beta-d-glucopyranoside was administered orally to rats.  相似文献   

8.
林强  杨超  李美丽  王佳  侯瀚然  邵兵  牛宇敏 《色谱》2021,39(4):399-405
生物样品中脂溶性贝类毒素的检测,可为食物中毒等突发公共卫生事件的流行病学调查以及中毒者的临床救治提供技术支持.目前的研究存在目标化合物少,以及方法前处理复杂、灵敏度低等问题.该研究通过优化前处理和色谱分离技术,建立了超高效液相色谱-串联质谱法测定血浆、尿液中12种脂溶性贝类毒素的方法.实验对提取试剂以及流动相的选择进行...  相似文献   

9.
High-performance liquid chromatographic methods for quantification of a novel carbapenem anti-infective agent, I, in plasma and urine have been developed, validated, and applied to clinical samples. The carbapenem is stabilized in the matrix by the addition of a non-nucleophilic buffer, rapid freezing, and storage at -70 degrees C. After addition of another carbapenem, II, as internal standard, plasma proteins are precipitated with acetonitrile, which is subsequently extracted from the sample with methylene chloride. A portion of the aqueous phase is injected onto a reversed-phase phenyl column that is eluted with 4% (v/v) acetonitrile in 15 mM ammonium phosphate (pH 7.4). The urine assay entails addition of the internal standard II to buffered urine, which is subsequently extracted with methylene chloride prior to injection of the aqueous phase onto a cation-exchange column. The urine assay mobile phase is 5% v/v tetrahydrofuran in 100 mM sodium acetate (pH 5.4). The detector response at 313 nm is a linear (r greater than 0.99) function of concentration over the ranges 0.50-100 micrograms/ml and 2.0-200 micrograms/ml for the plasma and urine assays, respectively. Thermal degradation products do not interfere with either assay. These assays have proven to be accurate, precise, reproducible, and rugged during clinical sample analyses.  相似文献   

10.
Chae  Yoon-Jee  Koo  Tae-Sung  Lee  Kyeong-Ryoon 《Chromatographia》2012,75(19):1117-1128

A liquid chromatography-mass spectrometry (LC-MS) assay was developed and validated for the quantification of lurasidone, an atypical antipsychotic drug, in rat plasma, bile, and urine. Rat plasma, bile, or urine samples were processed by liquid–liquid extraction and injected onto an LC-MS system for the quantification of lurasidone and ziprasidone (an internal standard). Lurasidone and ziprasidone were separated from endogenous substances using a Gemini C6-Phenyl column with mixture of acetonitrile and 0.1 % formic acid (80:20, v/v) as the mobile phase. Quantification was performed using the selected ion monitoring mode at m/z 493 for lurasidone and m/z 413 for the IS. The detector response was specific and linear for lurasidone in the concentration range 5–5,000 ng mL−1 The intra- and inter-day accuracy and precision of the method were determined to be within the acceptable criteria for assay validation guidelines. In addition, lurasidone was stable under a variety of processing and handling conditions. Lurasidone concentrations could be readily measured in rat plasma, bile, and urine samples up to 24 h after an intravenous or oral administration, suggesting that the assay can be used in pharmacokinetic studies of lurasidone in rats.

  相似文献   

11.
A high-performance liquid chromatographic method was optimized and validated for the determination of desacetyl nitazoxanide (tizoxanide), the main active metabolite of nitazoxanide in human plasma, urine and breast milk. The proposed method used a CN column with mobile phase consisting of acetonitrile-12mM ammonium acetate-diethylamine in the ratio of 30:70:0.1 (v/v/v) and buffered at pH 4.0 with acetic acid, with a flow rate of 1.5 mL/min. Quantitation was achieved with UV detection at 260 nm using nifuroxazide as internal standard. A simplified direct injection of urine samples without extraction in addition to the urinary excretion pattern were calculated using the proposed method. Also, the effectiveness of protein precipitation and a clean-up procedure were investigated for biological plasma and human breast milk samples. The validation study of the proposed method was successfully carried out in an assay range between 0.2 and 20 μg/mL.  相似文献   

12.
张晓艺  张秀尧  蔡欣欣  李瑞芬 《色谱》2018,36(10):979-984
建立了离子色谱-三重四极杆质谱测定血浆和尿液样品中氟乙酸(MFA)的方法。血浆样品经高氯酸超声提取,尿液样品经高氯酸酸化,血浆和尿液提取液在pH 0.5~1.0条件下用叔丁基甲醚(MTBE)萃取,萃取液经氮吹浓缩后溶于0.1%(v/v)氨水溶液。以Ionpac AS 19型阴离子色谱柱为分析柱,在线自动产生的氢氧化钾作为淋洗液进行梯度分离,柱流出液经阴离子抑制器抑制后进入质谱系统。采用电喷雾电离源,在负离子、多离子监测(MRM)模式下检测,13C2-氟乙酸稳定同位素内标法定量。血浆和尿液样品中氟乙酸的平均加标回收率为96.2%~120%,相对标准偏差为1.1%~13.1%(n=6),方法的检出限(S/N=3)分别为0.03 μg/L和0.1 μg/L。该法简单、灵敏、准确,可用于生物样品中氟乙酸的检测。  相似文献   

13.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

14.
Xu  Fan  Xu  Guili  Shang  Beicheng  Yu  Fang 《Chromatographia》2009,69(11):1421-1426

A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min−1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL−1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL−1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL−1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.

  相似文献   

15.
A reversed-phase high-performance liquid chromatography assay for mangiferin in rat plasma and urine was developed. Rutin was employed as an internal standard. The mobile phase consisted of acetonitrile-water (16:84, v/v) containing 3% acetic acid at a flow rate of 1 mL/min. Detection was at 257 and 365 nm for mangiferin in plasma and urine, respectively. The limit of quantitation (LOQ) of mangiferin was 0.6 microg/mL in plasma, and 0.48 microg/mL in urine. The standard curve was linear from 0.6 to 24 microg/mL in plasma, and 0.48 to 24 microg/mL in urine, both intra- and inter-day precision of the mangiferin were determined and their RSD did not exceed 10%. The method provides a technique for rapid analysis of mangiferin in rat plasma and urine, which can be used in pharmacokinetic studies.  相似文献   

16.
Summary A simple, sensitive and rapid capillary electrophoretic method has been developed for the separation and quantification of amiodarone and its metabolite, desethylamiodarone. The compounds were separated in a capillary of 45 cm effective length and 75 μm i.d., by use of an applied voltage of 25 kV and an electrolyte containing 15mm ADA buffer (pH 7.5), 10mm SDS, and 70% (v/v) acetonitrile. The selectivity, precision, linearity, range, sensitivity, and robustness of the method were good. The applicability of the assay was demonstrated by analyzing these drugs in serum. Electrokinetic injection with field-amplified sample-stacking was used to increase sensitivity. The limit of detection of the serum assay was 6.46 ng mL−1 and the precision 3.7%.  相似文献   

17.
A sensitive method is described for the measurement of remoxipride in human plasma and urine. Remoxipride and its internal standard are extracted from plasma or urine at pH 12 with a mixture of hexane and methyl tert.-butyl ether. After washing the organic phase with base, the compounds are extracted into acid and analyzed on a C18 column with ultraviolet detection at 214 nm. The mobile phase is composed of acetonitrile and aqueous buffer (sodium perchlorate and phosphoric acid, pH 1.7). The limits of reliable quantitation for remoxipride are 12.5 and 50 ng/ml for plasma and urine, respectively. The run times are 6 min for plasma and 3 min for urine. The method has been successfully used to assay remoxipride clinical study samples. This mobile phase has also been successfully applied to the analysis of other basic drugs such as cimetidine, codeine, diltiazem and quinidine with minor modifications.  相似文献   

18.
A sensitive reversed-phase high-performance liquid chromatographic (HPLC) technique with ultraviolet detection has been developed to determine the concentration of BRB-I-28 (I), a novel antiarrhythmic agent, in dog plasma and urine. The mobile phase was acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8-triethylamine (50:50:75:0.1, v/v). The compound was extracted from dog plasma and urine with chloroform after alkalinization with sodium hydroxide. The extraction recovery was 83% from plasma and 84% from urine. Good linearity (r > 0.996) was observed throughout the ranges 0.1-12.0 micrograms/ml (plasma) and 0.1-8.0 micrograms/ml (urine). Intra- and inter-assay variabilities were less than 4%. The lower limit of quantitation was 0.08 microgram/ml in either plasma or urine. HPLC analysis of plasma and urine samples from a dog treated with I has demonstrated that the method was accurate and reproducible.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic (HPLC) assay was developed for the antitumor anthrapyrazole analogue, oxantrazole (OX), in rat whole blood and tissues. Blood samples were mixed with equal volumes of a 25% (w/v) aqueous solution of L-ascorbic acid, whereas tissue samples were homogenized with 1.5-3 volumes of an L-ascorbic acid-methanol-water (1:10:1, w/v/v) mixture to prevent oxidative degradation of OX. Samples were then treated with 60% (v/v) perchloric acid (25-30 microliters/ml of stabilized sample) to precipitate proteins, and centrifuged, with the resultant supernatants analyzed on HPLC utilizing a C8 column. The mobile phase for blood and urine samples consisted of 8% (v/v) glacial acetic acid, 13% (v/v) acetonitrile, 79% (v/v) water, 0.16% (w/v) sodium acetate, and 0.05% (w/v) L-ascorbic acid (final pH 2.7), and was pumped at 1.8 ml/min. Tissue samples were eluted at 2 ml/min with a mobile phase consisting of 8% (v/v) glacial acetic acid, 12% (v/v) acetonitrile, 80% (v/v) water, 0.16% (w/v) sodium acetate, and 0.0;5% (w/v) L-ascorbic acid. OX and internal standard were detected at 514 nm and had retention times of 2.3 and 3.1 min, respectively. The limit of quantitation of OX was 25-50 ng/g. Recovery of OX from biological samples ranged from 50 +/- 0.9% in spleen to 102.8 +/- 1.8% in RG-2 glioma. The analytical method was applied to a pharmacokinetic study in rats.  相似文献   

20.
A high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of cefamandole and cefamandole nafate in plasma and urine. The plasma and urine samples were injected onto a precolumn packed with Corasil RP C18 (37-50 microns) after simple dilution with an internal standard solution in 0.05 M phosphoric acid. Polar plasma and urine components were washed out using 0.05 M phosphoric acid. After valve switching, the concentrated drugs were desorbed in back-flush mode and separated by a reversed-phase C8 column with methanol-5 mM tetrabutylammonium bromide (45:55, v/v) as the mobile phase. The method showed excellent precision with good sensitivity and speed, and a detection limit of 0.5 microgram/ml. The total analysis time per sample was less than 30 min, and the mean coefficients of variation for intra- and inter-assay were both less than 4.9%. The method has been successfully applied to plasma and urine samples for human volunteers after intravenous injection of cefamandole nafate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号