首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Δm50% ≥ 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins.  相似文献   

2.
The experimental Fourier transform ion cyclotron resonance (FT/ICR) frequency range has been extended to 107 MHz. We report the observation of FT/ICR signals from electron-ionized species of mass-to-charge ratio 8, 7, 6, 5, 4, 3, 2, and 1 μ per elementary charge. We show that moderately high charge states of atomic ions (e.g., N3+) are easily generated and detected. Several applications for high-frequency FT/ICR mass spectrometry are proposed and discussed.  相似文献   

3.
Electrospray ionization (ESI) in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry provides for mass analysis of biological molecules with unrivaled mass accuracy, resolving power and sensitivity. However, ESI FTICR MS performance with on-line separation techniques such as liquid chromatography (LC) and capillary electrophoresis has to date been limited primarily by pulsed gas assisted accumulation and the incompatibility of the associated pump-down time with the frequent ion beam sampling requirement of on-line chromatographic separation. Here we describe numerous analytical advantages that accrue by trapping ions at high pressure in the first rf-only octupole of a dual octupole ion injection system before ion transfer to the ion trap in the center of the magnet for high performance mass analysis at low pressure. The new configuration improves the duty cycle for analysis of continuously generated ions, and is thus ideally suited for on-line chromatographic applications. LC/ESI FTICR MS is demonstrated on a mixture of 500 fmol of each of three peptides. Additional improvements include a fivefold increase in signal-to-noise ratio and resolving power compared to prior methods on our instrument.  相似文献   

4.
To improve the analytical usefulness of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), an extensive survey of various methods for quantitation of peak magnitudes has been undertaken using a series of simulated transient response signals with varying signal-to-noise ratio. Both peak height (five methods) and peak area (four methods) were explored for a range of conditions to determine the optimum methodology for quantitation. Variables included dataset size, apodization function, damping constant, and zero filling. Based on the results obtained, recommended procedures for optimal quantitation include: apodization using a function appropriate for the peak height ratios observed in the spectrum (i.e., Hanning for ratios of about 1:10, three-term Blackman-Harris for ratios of ~1:100, or Kaiser-Bessel for ratios of ~1:1000); zero filling until the peaks of interest are represented by 10–15 points (generally obtained with one order of zero filling); and use of the polynomial y=(ax 2+bx+c) n and the three data points of highest intensity of the peak to locate the peak maximum, Y max=(?b 2/4a+c) n . In this peak fitting procedure, which we have termed the “Comisarow method,” n is 5.5, 9.5, and 12.5 for the Hanning, three-term Blackman-Harris, and Kaiser-Bessel apodization functions, respectively. Accuracy of quantitation using an optimal peak height determination is about equal to that for peak area measurements. These recommendations were found to be valid when tested with real FTICR-MS spectra of xenon isotopes.  相似文献   

5.
A new technique for manipulating the kinetic energy distribution of electrospray ions that arrive at a Fourier transform ion cyclotron resonance trapped-ion cell is presented. Narrow kinetic energy distributions can complicate the selection of appropriate trapping conditions for electrospray ions and introduce charge discrimination in resulting mass spectra. Modulation of the applied skimmer potential controllably broadens the kinetic energy distribution, which improves the reproducibility of acquired spectra and eliminates charge discrimination. Mass spectra of horse heart cytochrome c are presented to demonstrate the utility of the technique. For example, applied static skimmer potentials of 12 and 9 V yield charge state distributions ranging from [M+19H]+19 to [M+12H]+12 and [M+15H]+15 to [M+7H]+7, respectively. A 12 ± 2 V, 100-Hz modulation of the skimmer potential yields an electrospray spectrum with charge states that range from [M+19H]+19 to [M+7H]+7, which is more representative of the source distribution.  相似文献   

6.
FT-ICR mass spectrometry, together with collision-induced dissociation and electron capture dissociation, has been used to characterize the polyphosphoester poly[1,4-bis(hydroxyethyl)terephthalate-alt-ethyloxyphosphate] and its degradation products. Three degradation pathways were elucidated: hydrolysis of the phosphate-[1,4-bis(hydroxyethyl)terephthalate] bonds; hydrolysis of the phosphate-ethoxy bonds; and hydrolysis of the ethyl-terephthalate bonds. The dominant degradation reactions were those that involved the phosphate groups. This work constitutes the first application of mass spectrometry to the characterization of polyphosphoesters and demonstrates the suitability of high mass accuracy FT-ICR mass spectrometry, with CID and ECD, for the structural analysis of polyphosphoesters and their degradation products.  相似文献   

7.
A new internal matrix-assisted laser desorption-ionization (MALDI) Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) method is introduced. The target is directly positioned at one trapping electrode of a single cylindrical ion cyclotron resonance (ICR) cell and becomes a part of it. The ionization occurs inside the ICR cell in contrast to external or near-cell MALDI-FTICR-MS techniques. Very efficient trapping and mass resolving power better than unit resolution of singly charged peptides and proteins ions up to 2000 u is possible by using only basic FTICR-MS techniques. The sole application of a pulsed retarding potential increases the mass range to 6000 u. No collisional cooling and quadrupolar excitation was done. Sensitivities below 1 fmol, and ion storage times of more than 15 s are shown. High resolving powers of 16,000 and 56,000 are obtained on bovine insulin (5.7 ku) and gramicidin D (1.9 ku), respectively.  相似文献   

8.
Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed “Gated TIMS” that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.  相似文献   

9.
The present range and power of Fourier transform ion cyclotron resonance mass spectrometry rest on a number of prior technique developments. In this article, selected developments in neutral/ion introduction, ionization methods, excitation/detection, ion trap configuration/operating modes, ion dissociation and MS/MS, ion cooling techniques, theory and data reduction are briefly explained and chronicled. Evidence for the value of these techniques is provided by a compilation of current world records for mass resolution, mass resolving power and mass accuracy. With these capabilities, it becomes possible to resolve and identify up to thousands of components of a complex mixture, often without prior wet chemical separation, thereby potentially changing the whole approach to dealing with chemical and biological complexity.  相似文献   

10.
11.
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.  相似文献   

12.
Previous mass spectrometers based on the ion cyclotron resonance principle have employed continuous excitation (single-pulse or frequency-sweep), With detection during (frequency-sweep) or after (single-pulse or frequency sweep) the excitation. The present paper introduces an experiment in which an ion is first excited to a Larger orbit by continuous excitation, and then “de-excited” back to its starting point. The effect is demonstrated for the C9F20N+ peak (m/z = 502) in the Fourier transform ion cyclotron mass spectrum of perfluorotributylamine. By choosing which ion m/z ratios are “de-excited”, it should be possible to generate mass “windows” within which ions experience no net excitation. Potential applications of the method include the generation of an excitation with sharply defined “windows” or “steps”, with major advantages for MS/MS or multiple-ion-monitoring experiments.  相似文献   

13.
A new Fourier transform ion cyclotron resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1200 m/z in the isotopically resolved mass spectra.  相似文献   

14.
The Penning ion trap, consisting of hyperbolically curved electrodes arranged as an unbroken ring electrode capped by two end electrodes whose interelectrode axis lies along the direction of an applied static magnetic field, has long been used for single-ion trapping. More recently, it has been used in “parametric” mode for ion cyclotron resonance (lCR) detection of off-axis ions. In this article, we describe and test a Penning trap whose ring electrode has been cut into four equal quadrants for conventional dipolar ICR excitation (on one pair of opposed ring quadrants) and dipolar ICR detection (on the other pair). In direct comparisons to a cubic trap, the present hyperbolic trap offers somewhat improved ICR mass spectral peak shape, higher mass resolving power, and comparable frequency shift as a function of trapping voltage. Mass measurement accuracy over a wide mass range is improved twofold and mass discrimination is somewhat worse than for a cubic trap. The relative advantages of parametric, dipolar, and quadrupole modes are briefly discussed in comparison to screened and unscreened cubic traps.  相似文献   

15.
A novel Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been developed for improved biomolecule analysis. A flared metal capillary and an electrodynamic ion funnel were installed in the source region of the instrument for improved ion transmission. The transfer quadrupole is divided into 19 segments, with the capacity for independent control of DC voltage biases for each segment. Restrained ion population transfer (RIPT) is used to transfer ions from the ion accumulation region to the ICR cell. The RIPT ion guide reduces mass discrimination that occurs as a result of time-of-flight effects associated with gated trapping. Increasing the number of applied DC bias voltages from 8 to 18 increases the number of ions that are effectively trapped in the ICR cell. The RIPT ion guide with a novel voltage profile applied during ion transfer provides a 3- to 4-fold increase in the number of ions that are trapped in the ICR cell compared with gated trapping for the same ion accumulation time period. A novel ICR cell was incorporated in the instrument to reduce radial electric field variation for ions with different z-axis oscillation amplitudes. With the ICR cell, called trapping ring electrode cell (TREC), we can tailor the shape of the trapping electric fields to reduce dephasing of coherent cyclotron motion of an excited ion packet. With TREC, nearly an order of magnitude increase in sensitivity is observed. The performance of the instrument with the combination of RIPT, TREC, flared inlet, and ion funnel is presented.  相似文献   

16.
The gas-phase structures of protonated (deoxy)nucleoside-5'- and 3'-monophosphates (mononucleotides) have been examined by the use of gas-phase hydrogen/deuterium (H/D) exchange and high-field Fourier-transform ion cyclotron resonance mass spectrometry. These nucleotides were reacted with three different deuterating reagents: ND3, D2O, and D2S, of which ND3 was the most effective. All mononucleotides fully exchanged their labile hydrogen for deuterium with ND3 with the exception of deoxycytidine-3'-monophosphate, deoxyadenosine-5'-monophosphate, adenosine-5'-monophosphate, and adenosine-3'-monophosphate. Semiempirical calculations demonstrate the presence of hydrogen bonding upon protonation of the purine mononucleotides which may lead to incomplete H/D exchange. H/D exchange rates differed between the deoxymononucleotides and the ribomononucleotides, suggesting that the 2'-OH group plays an important role in the exchange process. Reactions of nucleosides and mononucleotides with D2O demonstrate that a structure-specific long-lived ion-molecule complex between D2O and the mononucleotide involving the phosphate group is necessary for exchange to overcome the high-energy activation barrier. In contrast, a structure-specific long-lived ion-molecule complex between the mononucleotides and ND3 is not required for exchange to occur.  相似文献   

17.
Successful electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applications to peptide and protein structural analysis have been enabled by constant progress in implementation of improved electron injection techniques. The rate of ECD product ion formation has been increased to match the liquid chromatography and capillary electrophoresis timescales, and ECD has been combined with infrared multiphoton dissociation in a single experimental configuration to provide simultaneous irradiation, fast switching between the two techniques, and good spatial overlap between ion, photon, and electron beams. Here we begin by describing advantages and disadvantages of the various existing electron injection techniques for ECD in FT-ICR MS. We next compare multiple-pass and single-pass ECD to provide better understanding of ECD efficiency at low and high negative cathode potentials. We introduce compressed hollow electron beam injection to optimize the overlap of ion, photon, and electron beams in the ICR ion trap. Finally, to overcome significant outgassing during operation of a powerful thermal cathode, we introduce nonthermal electron emitter-based electron injection. We describe the first results obtained with cold cathode ECD, and demonstrate a general way to obtain low-energy electrons in FT-ICR MS by use of multiple-pass ECD.  相似文献   

18.
Potassium halide adducts of the form K2X+ (X = F, CI, Br, and I) desorbed from neutral salts by high power, pulsed, infrared laser radiation are detected in abundance by Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. FT-ICR detection of the K2X+ adduct is favored at increased laser power densities (> 108 W/cm2) and at trapping potentials below 3 V, independent of X. In contrast, detection of K+ is promoted at laser power densities below 108 W/cm2 or at higher trapping potentials, with a threshold for trapping that is strongly dependent on X. When laser desorption/ionization (LDI)/FT-ICR is performed on 1:1 mixtures of KX and organic molecules, ejection pulses applied continuously at the cyclotron resonance frequency of K2X+ inhibit formation of the cation-attached product, [M + K]+. Conversely, resonance ejection of K+ enhances [M + K]+, apparently by reducing the matrix ion population trapped in the cell. In evaluating higher molecular weight adducts, only K3F 2 + formed in abundance by laser desorption of KF is found through double resonance experiments to contribute significantly to formation of [M + K]+. Finally, among the potassium halides, KI generates the highest ratio of detected K2X+ to K+ at low trapping potentials and is therefore best suited for cation-transfer reactions in infrared LDI/FT-ICR experiments performed at power densities in the 108 W/cm2 range.  相似文献   

19.
The Fourier transform ion cyclotron resonance mass spectrometry remeasurement experiment is demonstrated and evaluated under high resolution conditions. Signal-to-noise enhancement is observed for isotopically resolved bovine insulin peaks at a resolution of ~ 31,000 (full width at half height). The experiment is sensitive to spacecharge effects and resultant changes in scan-to-scan signal-to-noise and resolution. Coulombic repulsion in the ion cloud during the high resolution remeasurement experiment can cause the cyclotron frequency to shift through the duration of the experiment, which results in broadened peak shapes when individual remeasurement spectra are coadded. By either reducing the number of ions in the cell or allowing the ion cloud to diffuse during the lifetime of the experiment, high resolution remeasurement spectra can be coadded without peak broadening or degradation of signal-to-noise ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号