首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pH-dependent phase behavior and hydroxide-ion adsorption ability of a series of (reduced) carbohydrate-based gemini surfactants were studied between pH 2 and 12. Static and dynamic light scattering were employed to address transitions in the aggregate morphologies and cryo-electron microscopy was used to provide further evidence for the morphologies present in solution. Changes in aggregate structure as a result of a change in solution pH and an accompanying change in protonation state or a change in molecular structure can be rationalized in terms of the variations in the packing parameter. In this paper we have focused our attention on the size of the carbohydrate moiety, the carbohydrate stereochemistry and the nature of the spacer (hydrophobic vs hydrophilic). At near neutral pH, most of the gemini surfactants form vesicles. Upon lowering of the pH, the vesicles undergo a transition toward wormlike micelles followed by a transition to spherical micelles. Upon increasing the solution pH, flocculation occurs due to charge neutralization followed at still higher pH by redispersion and charge reversal of the vesicles through the specific adsorption of hydroxide ions to the vesicular surface. Upon decreasing head group size at constant, but low, degrees of protonation, the packing parameter has a tendency to become larger than one resulting in the formation of inverted phases. Upon further decrease in the head group size, oil droplets are observed. In case of a hydrophobic spacer, the carbohydrate stereochemistry affects the pH of the transitions, but not the type of the transitions. By contrast, for a hydrophilic spacer, the pH of the transitions remains unaffected. Adsorption of hydroxide ions at basic pH follows similar trends, but was only found for vesicles and oil droplets. The large range of structural variations that we have examined allows a better understanding of the requirements for the phase transitions for carbohydrate-based gemini surfactants as well as for the physisorption of hydroxide ions to interfaces in general.  相似文献   

2.
A series of dissymmetric gemini surfactants with the general formula [C12H25(CH3)2N(CH2)sN(CH3)2C14H29]Br2 designed as 12-s-14, where s=2, 6, and 10, were synthesized and their physicochemical properties investigated. The effect of spacer length on Krafft temperature, adsorption at the air/solution interface, and association in aqueous solution was studied by tensiometry, conductometry, and cryo-transmission electron microscopy. The Krafft temperature was found to increase linearly with spacer length. In the submicellar concentration range the dissymmetric 12-s-14 surfactants display ion pairing and premicellar association. Adsorption at air/solution interfaces and micellization in aqueous solution are similar to the behavior of their symmetric counterparts and depend strongly on spacer length.  相似文献   

3.
The phase behavior of a system of n-butanol/n-octane/water/cationic gemini surfactant, alkanediyl-alpha,omega-(dimethydodecyl-ammonium bromide)(12-n-12, n=3,4,6), has been investigated by determination the pseudo-ternary phase diagrams. The results have shown that the spacer group of gemini surfactant has a great effect on the phase behavior. The longer the spacer group for the geminis, the more similar the geminis properties to the traditional ones. The mixing content of surfactant and cosurfactant needed for forming microemulsions increases with the geminis' spacer group. The study has also shown that the shorter spacer group of geminis is favorable for the formation of higher ordered surfactant aggregates such as liquid crystals. Furthermore, the microstructures of each region for the studied systems have been investigated by electrical conductivity measurements, UV-visible absorbance spectra of pyrene probe, and dynamic light scattering (DLS). All the results are in accord with each other. DLS makes use of the sensitivity of DLS to structural changes and as expected the hydrodynamic diameter of the microemulsion droplet changes as the transformation of microemulsion microstructures take place. Moreover, the spherical and network structures of microemulsion were further verified by freezing-etching TEM.  相似文献   

4.
A series of dissymmetric gemini imidazolium surfactants with different spacer length ([CmCsCnim]Br2, m + n = 24, m = 12, 14, 16, 18; s = 2, 4, 6) were synthesized and characterized by 1H NMR and ESI-MS spectroscopy. Their adsorption and thermodynamic properties were investigated by the surface tension and electrical conductivity methods. Consequently, the surface activity parameters (cmc, γcmc, πcmc, pC20, cmc/C20, Γmax, Amin) and thermodynamic parameters (ΔGmθ, ΔHmθ, ΔSmθ) were obtained. The effects of the dissymmetry (m/n) and the spacer length (s) on the surface activity and micellization process of surfactants have been discussed in detail.  相似文献   

5.
The aggregation behavior and thermodynamic properties of micellization for the ionic liquid-type gemini imidazolium surfactants with different spacer length ([C12s–C12im]Br2, s = 2, 4, 6) have been investigated by means of surface tension, electrical conductivity, dynamic light scattering and fluorescence measurements. The values of cmc, γ cmc, Γ max, A min, π cmc, pc20 and cmc/pc20 suggest that the shorter the spacer, the higher the surface activity of [C12s–C12im]Br2 is. The cmc and γ cmc values are decreased significantly in the presence of sodium halides, and the values decrease in the order NaCl < NaBr < NaI. The thermodynamic parameters of micellization (, , ) indicate that the micellization of [C12–2–C12im]Br2 and [C12–4–C12im]Br2 is entropy-driven, whereas aggregation of [C12–6–C12im]Br2 is enthalpy-driven at lower temperature but entropy-driven at higher temperature. Finally, the fluorescence measurements show that the micropolarity of micelles increases but the aggregation numbers decrease with increasing the spacer length of [C12s–C12im]Br2.  相似文献   

6.
The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.  相似文献   

7.
The synthesis and associated structure-activity relationships for gene transfection of a series of spermine-derived cationic gemini surfactants incorporating diamino acid headgroups and either identical (symmetrical) or different (unsymmetrical) lipophilic tailgroups is described. Transfection activity is found to depend critically upon the structural elements present.  相似文献   

8.
The influence of the length of a flexible hydrophobic spacer on the selectivity of anionic dimeric surfactants was investigated. Disodium 1,omega-bis(decyloxymethyl)-dioxa alkane-1,omega disulfates with a spacer containing an ethylene, butylene, hexylene, octylene, decylene or dodecylene group were synthesized, and four of these were evaluated for use in micellar electrokinetic chromatography (MEKC) via linear solvation energy relationships (LSERs). There were no significant differences in the system constants of these surfactants, indicating that their micelles all have a very similar interface with the aqueous phase, regardless of the length of the hydrophobic spacer. Compared to sodium dodecylsulfate (SDS), these dimeric surfactants are slightly more cohesive, interact better with polarizable compounds, and are somewhat better hydrogen bond acceptors and worse hydrogen bond donors, while there is no difference in dipolarity. The critical micelle concentrations (CMCs) of these surfactants were in the order of 1mM, except for the dimeric surfactant with a spacer containing an ethylene group, which had a CMC <0.03 mM.  相似文献   

9.
Three cationic gemini surface active compounds of the type (1r,4r)-1,4-dialkyl-1,4-dimethy-l-piperazine-1,4-diium bromide (Ia, Ib, and Ic), were synthesized. They were characterized using elemental analysis and 1H-NMR spectra. Their surface-active properties were measured in aqueous solutions with different concentrations at different temperatures (25, 40, and 55°C). Various surface measurements of these gemini surfactants, (compared to the conventional one, 1-Dodecyl-1-methylpiperidinium bromide (a)) were estimated, specifically critical micelle concentration (CMC), effectiveness (πCMC), efficiency (PC20) as well as maximum surface excess (Γmax) and minimum surface area (Amin). The measurements of the gemini compounds gave low CMC, high efficiency in reducing the surface tension, and intense adsorption at air/water interface. These surfactants have lower Krafft points and thus better solubility. Thermodynamic data, free energy, entropy, and enthalpy changes (ΔG°, ΔS°, and ΔH°) for micellization at the air/water interface and also for adsorption in the bulk of surface-active solutions were calculated.  相似文献   

10.
Twelve new gemini imidazolium surfactants have been synthesized, having dodecyl, tetradecyl, hexadecyl, and octadecyl chain lengths and three different spacers (i.e., -S-(CH(2))(n)-S-), where n = 2, 3, and 4 and their surface properties have been evaluated by surface tension and conductivity methods. The thermal degradation of these new gemini surfactants was determined by thermogravimetric analysis (TGA). These surfactants have low cmc values as compared to other categories of gemini cationic surfactants and exhibit peculiarities at sufficiently low concentration because they were able to form premicellar aggregates over a wide range of concentration below their cmc values. The DNA binding affinity of these gemini surfactants determined by agarose gel electrophoresis and ethidium bromide exclusion experiments established their strong interaction with DNA, thereby protecting it against enzymatic degradation.  相似文献   

11.
Critical micelle concentrations of the Cm TAB+12- s-12 (s=3, 4, 5 and m=10, 12, 14, 16) binary systems have been determined, through conductivity and fluorescence measurements, at 298 K. Application of different theoretical approaches to explain mixed micellization shows that non-ideality of the binary systems follows the trend C16TAB+12-3-12相似文献   

12.
13.
Dimeric (gemini) surfactants are made up of two amphiphilic moieties connected at the level of, or very close to, the head groups by a spacer group of varying nature: hydrophilic or hydrophobic, rigid or flexible. These surfactants represent a new class of surfactants that is finding its way into surfactant-based formulations. The nature of the spacer group (length, flexibility, chemical structure) has been shown to be of the utmost importance in determining the solution properties of aqueous dimeric surfactants. This paper reviews the effect of the nature of the spacer on some of these properties. The behavior of dimeric surfactants in the submicellar range of concentration, at interfaces, in dilute solution (solubility in water, Krafft temperature, critical micellization concentration, thermodynamics of micelle formation, micelle ionization degree, size, polydispersity, micropolarity and microviscosity, microstructure and rheology of the solutions, solubilization, micelle dynamics, and interaction with polymers) and in concentrated solution (phase behavior) are successively reviewed. Selected results concerning trimeric and tetrameric surfactants are also reviewed.  相似文献   

14.
Novel quaternary ammonium cationic gemini surfactants, with two hydrocarbon chains and an adamantane core, were designed and synthesized by three-step reactions from adamantane. The structure of obtained surfactants were confirmed by 1H NMR, FTIR and elements analysis and the surface properties of these surfactants were also studied by surface tension measurements. These target surfactants exhibit much lower critical micelle concentrations (CMC) and higher efficiency in lowering the surface tension of water than typical surfactants.  相似文献   

15.
The preparation and characterization of three stereoisomeric cationic gemini surfactants, 2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonio)butane dibromide, are described. The aggregation properties have been studied by fluorescence, electrical conductivity, and quasi-elastic light scattering. A conformational study of the surfactant headgroups has been performed by molecular mechanics calculations to investigate the effect of the stereogenic centers on the surfactant molecular shape and therefore on the different organizations of the monomers in the aggregates. Results show that the stereochemistry of the spacer strongly influences the aggregation behavior of the diasteromeric gemini in water.  相似文献   

16.
Energy dispersive X-ray diffraction was applied to investigate the role of the spacer stereochemistry on the structure of the solid supported aggregates of three stereoisomeric cationic gemini surfactants, 2,3-dimethoxy-1,4-bis-(N-hexadecyl-N,N-dimethylammonio)butane dibromide. Solid-supported Gemini surfactant aggregates self-assemble into highly interdigitated multibilayer stacks. Structural properties, such as the bilayer thickness, the headgroup size, the thickness of the hydrophobic core, and the size of the interbilayer water region, were derived from electron density profiles. Results show that the stereochemistry of the spacer controls the structural properties of the solid-supported interfacial aggregates.  相似文献   

17.
Studies of the aggregation behavior of cyclic gemini surfactants   总被引:1,自引:0,他引:1  
The specific conductance, surface tension, mean aggregation number, and apparent molar volume properties of aqueous solutions of a novel series of N,N'-bis(cyclododecyldimethyl)-alpha,omega-alkanediammonium dibromide (c12-s-c12) surfactants, where s is the spacer chain length, are reported. Surfactants with s = 3, 4, and 6 have been prepared and characterized in terms of their Krafft temperature (T(Kr)), critical micelle concentration (cmc), surfactant head group area (a) at the air-water interface, mean aggregation number (N(agg)), and the volume change upon micelle formation (deltaV(phi,M)). The c12-3-c12 shows little evidence of aggregate formation, while the results obtained for the c12-4-c12 and c12-6-c12 homologues suggest the formation of small, poorly defined micellar aggregates in aqueous solution.  相似文献   

18.
The aggregation properties of three dicationic quaternary ammonium gemini surfactants with the same structure, except the spacer group, diethyl ether, six methylene, and p-xylyl, have been studied using electrical conductivity and fluorescence. The critical micelle concentration (cmc) and the micelle aggregation number (N) were determined, and the micropolarity and the microviscosity of the micelle were characterized. The micelle ionization degree (alpha) was obtained by a combination of the electrical conductivity data and the micelle aggregation number. Furthermore, the Gibbs free energy of micellization (deltaGmic) was studied. These results have shown that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in an aqueous solution. A hydrophilic, flexible spacer prompts micelle formation, which leads to a smaller cmc, smaller alpha, larger N, and more negative deltaGmic. Meanwhile, the microviscosity study indicates that the gemini surfactant with a hydrophilic, flexible spacer forms a more closely packed micelle structure than the one with a hydrophobic, rigid spacer.  相似文献   

19.
The lyotropic phase behavior for the neat cationic gemini surfactants alkanediyl-alpha,omega-bis(alkyldimethylammonium bromide), designated here as m-s-m, has been investigated previously in several works, but the thermotropic behavior has not been well characterized. Only for 15-s-15 and 14-s-12 have thermotropic liquid crystals (Lc) been reported. In this work, for the first time and in contrast to previous reports, we observe thermotropic Lc formation for m-2-m geminis with m = 12, 14, 16, and 18, by means of polarizing microscopy and differential scanning calorimetry (DSC). Furthermore, we investigate mixtures of m-2-m and SDS, m-2-m Br2.2SDS, which exhibit crystal-to-crystal phase transitions at lower temperature and, at high temperature, smectic Lc phases. The transition temperatures and enthalpies for Lc phases, obtained by DSC, present clear trends upon increase of the chain lengths. Combining Langmuir film experiments, possible lamellar arrangements for the different phases are tentatively discussed.  相似文献   

20.
The adsorption and micellization behavior of novel sugar-based gemini surfactants (N,N(')-dialkyl-N,N(')-digluconamide ethylenediamine, Glu(n)-2-Glu(n), where n is the hydrocarbon chain length of 8, 10 and 12) has been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The static surface tension of the aqueous Glu(n)-2-Glu(n) solutions measured at the critical micelle concentration (cmc) is observed to be significantly lower than that of the corresponding monomeric surfactants. This suggests that the gemini surfactants, newly synthesized in the current study, are able to form a closely packed monolayer film at the air/aqueous solution interface. The greater ability in the molecular association is supported by the remarkably (approximately 100-200 times) lower cmc of the gemini surfactants compared with the corresponding monomeric ones. With a combination of the fluorescence and DLS data, a structural transformation of the Glu(n)-2-Glu(n) micelles is suggested to occur with an increase in the concentration. The cryo-TEM measurements clearly confirm the formation of worm-like micelles of Glu(12)-2-Glu(12) at the concentration well above the cmc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号