首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, we study the effects of embedding a system of non-linear phase oscillators in a two-dimensional scale-free lattice. In order to analyze the effects of the embedding, we consider two different topologies. On the one hand, we consider a scale-free complex network where no constraint on the length of the links is taken into account. On the other hand, we use a method recently introduced for embedding scale-free networks in regular Euclidean lattices. In this case, the embedding is driven by a natural constraint of minimization of the total length of the links in the system. We analyze and compare the synchronization properties of a system of non-linear Kuramoto phase oscillators, when interactions between the oscillators take place in these networks. First, we analyze the behavior of the Kuramoto order parameter and show that the onset of synchronization is lower for non-constrained lattices. Then, we consider the behavior of the mean frequency of the oscillators as a function of the natural frequency for the two different networks and also for different values of the scale-free exponent. We show that, in contrast to non-embedded lattices that present a mean-field-like behavior characterized by the presence of a single cluster of synchronized oscillators, in embedded lattices the presence of a diversity of synchronized clusters at different mean frequencies can be observed. Finally, by considering the behavior of the mean frequency as a function of the degree, we study the role of hubs in the synchronization properties of the system.  相似文献   

2.
We study the optimal distance in networks, l(opt), defined as the length of the path minimizing the total weight, in the presence of disorder. Disorder is introduced by assigning random weights to the links or nodes. For strong disorder, where the maximal weight along the path dominates the sum, we find that l(opt) approximately N(1/3) in both Erdos-Rényi (ER) and Watts-Strogatz (WS) networks. For scale-free (SF) networks, with degree distribution P(k) approximately k(-lambda), we find that l(opt) scales as N((lambda-3)/(lambda-1)) for 3 or =4. Thus, for these networks, the small-world nature is destroyed. For 2相似文献   

3.
We propose a method for representing vertices of a complex network as points in a Euclidean space of an appropriate dimension. To this end, we first adopt two widely used quantities as the measures for the dissimilarity between vertices. The dissimilarity is then transformed into its corresponding distance in a Euclidean space via the non-metric multidimensional scaling. We applied the proposed method to real-world as well as models of complex networks. We empirically found that real-world complex networks were embedded in a Euclidean space of relatively lower dimensions and the configuration of vertices in the space was mostly characterized by the self-similarity of a multifractal. In contrast, by applying the same scheme to the network models, we found that, in general, higher dimensions were needed to embed the networks into a Euclidean space and the embedding results usually did not exhibit the self-similar property. From the analysis, we learn that the proposed method serves a way not only to visualize the complex networks in a Euclidean space but to characterize the complex networks in a different manner from conventional ways.  相似文献   

4.
A recurrence plot is a visualization tool for analyzing experimental data. These plots often reveal correlations in the data that are not easily detected in the original time series. Existing recurrence plot analysis techniques, which are primarily application oriented and completely quantitative, require that the time-series data first be embedded in a high-dimensional space, where the embedding dimension d(E) is dictated by the dimension d of the data set, with d(E)>/=2d+1. One such set of recurrence plot analysis tools, recurrence quantification analysis, is particularly useful in finding locations in the data where the underlying dynamics change. We have found that for certain low-dimensional systems the same results can be obtained with no embedding. (c) 1998 American Institute of Physics.  相似文献   

5.
In this paper, firstly, we study analytically the topological features of a family of hierarchical lattices (HLs) from the view point of complex networks. We derive some basic properties of HLs controlled by a parameter q: scale-free degree distribution with exponent γ=2+ln 2/(ln q), null clustering coefficient, power-law behavior of grid coefficient, exponential growth of average path length (non-small-world), fractal scaling with dimension dB=ln (2q)/(ln 2), and disassortativity. Our results show that scale-free networks are not always small-world, and support the conjecture that self-similar scale-free networks are not assortative. Secondly, we define a deterministic family of graphs called small-world hierarchical lattices (SWHLs). Our construction preserves the structure of hierarchical lattices, including its degree distribution, fractal architecture, clustering coefficient, while the small-world phenomenon arises. Finally, the dynamical processes of intentional attacks and collective synchronization are studied and the comparisons between HLs and Barabási-Albert (BA) networks as well as SWHLs are shown. We find that the self-similar property of HLs and SWHLs significantly increases the robustness of such networks against targeted damage on hubs, as compared to the very vulnerable non fractal BA networks, and that HLs have poorer synchronizability than their counterparts SWHLs and BA networks. We show that degree distribution of scale-free networks does not suffice to characterize their synchronizability, and that networks with smaller average path length are not always easier to synchronize.  相似文献   

6.
To study transport properties of scale-free and Erdos-Rényi networks, we analyze the conductance G between two arbitrarily chosen nodes of random scale-free networks with degree distribution P(k)-k(-lambda) in which all links have unit resistance. We predict a broad range of values of G, with a power-law tail distribution phi(SF)(G)-G(-g(G)), where g(G)=2lambda-1, and confirm our predictions by simulations. The power-law tail in phi(SF)(G) leads to large values of G, signaling better transport in scale-free networks compared to Erdos-Rényi networks where the tail of the conductivity distribution decays exponentially. Based on a simple physical "transport backbone" picture we show that the conductances of scale-free and Erdos-Rényi networks are well approximated by ck(A)k(B)/(k(A)+k(B)) for any pair of nodes A and B with degrees k(A) and k(B), where c emerges as the main parameter characterizing network transport.  相似文献   

7.
We study numerically the mean access times for random walks on hybrid disordered structures formed by embedding scale-free networks into regular lattices, considering different transition rates for steps across lattice bonds (F) and across network shortcuts (f). For fast shortcuts (f/F≫1) and low shortcut densities, traversal time data collapse onto a universal curve, while a crossover behavior that can be related to the percolation threshold of the scale-free network component is identified at higher shortcut densities, in analogy to similar observations reported recently in Newman-Watts small-world networks. Furthermore, we observe that random walk traversal times are larger for networks with a higher degree of inhomogeneity in their shortcut distribution, and we discuss access time distributions as functions of the initial and final node degrees. These findings are relevant, in particular, when considering the optimization of existing information networks by the addition of a small number of fast shortcut connections.  相似文献   

8.
卞春华  宁新宝 《中国物理》2004,13(5):633-636
Determining the embedding dimension of nonlinear time series plays an important role in the reconstruction of nonlinear dynamics. The paper first summarizes the current methods for determining the embedding dimension. Then, inspired by the fact that the optimum modelling dimension of nonlinear autoregressive (NAR) prediction model can characterize the embedding feature of the dynamics, the paper presents a new idea that the optimum modelling dimension of the NAR model can be taken as the minimum embedding dimension. Some validation examples and results are given and the present method shows its advantage for short data series.  相似文献   

9.
Using the renormalization group method, the critical behavior of Gaussian model is studied in external magnetic fields on X fractal lattices embedded in two-dimensional and d-dimensional (d > 2) Euclidean spaces, respectively. Critical points and exponents are calculated. It is found that there is long-range order at finite temperature for this model, and that the critical points do not change with the space dimensionality d (or the fractal dimensionality dr). It is also found that the critical exponents are very different from results of Ising model on the same lattices, and that the exponents on X lattices are different from the exact results on translationally symmetric lattices.  相似文献   

10.
We consider then-dimensional Euclidean lattices withZ m symmetries. It is shown that such lattices can be considered as ideals of some cyclotomic fields. Therefore we can translate problems about the above lattices into those about number theory. For alln (n22), we have obtained the classification of such lattices.  相似文献   

11.
We propose to study the infrared behaviour of polymerised (or tethered) random manifolds of dimension D interacting via an exclusion condition with a fixed impurity in d-dimensional Euclidean space in which the manifold is embedded. In this paper we take D=1, but modify the underlying free Gaussian covariance (thereby changing the canonical scaling dimension of the Gaussian random field) so as to simulate a polymerised manifold with fractional dimension . The canonical dimension of the coupling constant is , where −β/2 is the canonical scaling dimension of the Gaussian embedding field. β is held strictly positive and sufficiently small. For ɛ>0, sufficiently small, we prove for this model that the iterations of Wilson's renormalisation group transformations converge to a non-Gaussian fixed point. Although ɛ is small, our analysis is non-perturbative in ɛ. A similar model was studied earlier [CM] in the hierarchical approximation. Received: 7 January 1999 / Accepted: 20 August 1999  相似文献   

12.
《Physics letters. A》1996,223(5):337-340
Failure to find homogeneous scalar unitary cellular automata (CA) in one dimension led to consideration of only “approximately unitary” CA - which motivated our recent proof of a No-go Lemma in one dimension. In this note we extend the one dimensional result to prove the absence of nontrivial homogeneous scalar unitary CA on Euclidean lattices in any dimension.  相似文献   

13.
In recent work, we presented evidence that site-diluted triangular central-force networks, at finite temperatures, have a nonzero shear modulus for all concentrations of particles above the geometric percolation concentration p(c). This is in contrast to the zero-temperature case where the (energetic) shear modulus vanishes at a concentration of particles p(r)>p(c). In the present paper we report on analogous simulations of bond-diluted triangular lattices, site-diluted square lattices, and site-diluted simple-cubic lattices. We again find that these systems are rigid for all p>p(c) and that near p(c) the shear modulus mu approximately (p-p(c))(f), where the exponent f approximately 1.3 for two-dimensional lattices and f approximately 2 for the simple-cubic case. These results support the conjecture of de Gennes that the diluted central-force network is in the same universality class as the random resistor network. We present approximate renormalization group calculations that also lead to this conclusion.  相似文献   

14.
We study phase ordering on networks and we establish a relation between the exponent a(x) of the aging part of the integrated auto-response function and the topology of the underlying structures. We show that a(x) > 0 in full generality on networks which are above the lower critical dimension d(L), i.e., where the corresponding statistical model has a phase transition at finite temperature. For discrete symmetry models on finite ramified structures with T(c) = 0, which are at the lower critical dimension d(L), we show that a(x) is expected to vanish. We provide numerical results for the physically interesting case of the 2 - d percolation cluster at or above the percolation threshold, i.e., at or above d(L), and for other networks, showing that the value of a(x) changes according to our hypothesis. For O(N) models we find that the same picture holds in the large-N limit and that a(x) only depends on the spectral dimension of the network.  相似文献   

15.
In the analysis of complex, nonlinear time series, scientists in a variety of disciplines have relied on a time delayed embedding of their data, i.e., attractor reconstruction. The process has focused primarily on intuitive, heuristic, and empirical arguments for selection of the key embedding parameters, delay and embedding dimension. This approach has left several longstanding, but common problems unresolved in which the standard approaches produce inferior results or give no guidance at all. We view the current reconstruction process as unnecessarily broken into separate problems. We propose an alternative approach that views the problem of choosing all embedding parameters as being one and the same problem addressable using a single statistical test formulated directly from the reconstruction theorems. This allows for varying time delays appropriate to the data and simultaneously helps decide on embedding dimension. A second new statistic, undersampling, acts as a check against overly long time delays and overly large embedding dimension. Our approach is more flexible than those currently used, but is more directly connected with the mathematical requirements of embedding. In addition, the statistics developed guide the user by allowing optimization and warning when embedding parameters are chosen beyond what the data can support. We demonstrate our approach on uni- and multivariate data, data possessing multiple time scales, and chaotic data. This unified approach resolves all the main issues in attractor reconstruction.  相似文献   

16.
《Physics letters. A》2019,383(27):125854
We propose an entropy measure for the analysis of chaotic attractors through recurrence networks which are un-weighted and un-directed complex networks constructed from time series of dynamical systems using specific criteria. We show that the proposed measure converges to a constant value with increase in the number of data points on the attractor (or the number of nodes on the network) and the embedding dimension used for the construction of the network, and clearly distinguishes between the recurrence network from chaotic time series and white noise. Since the measure is characteristic to the network topology, it can be used to quantify the information loss associated with the structural change of a chaotic attractor in terms of the difference in the link density of the corresponding recurrence networks. We also indicate some practical applications of the proposed measure in the recurrence analysis of chaotic attractors as well as the relevance of the proposed measure in the context of the general theory of complex networks.  相似文献   

17.
Scaling phenomena have been intensively studied during the past decade in the context of complex networks. As part of these works, recently novel methods have appeared to measure the dimension of abstract and spatially embedded networks. In this paper we propose a new dimension measurement method for networks, which does not require global knowledge on the embedding of the nodes, instead it exploits link-wise information (link lengths, link delays or other physical quantities). Our method can be regarded as a generalization of the spectral dimension, that grasps the network’s large-scale structure through local observations made by a random walker while traversing the links. We apply the presented method to synthetic and real-world networks, including road maps, the Internet infrastructure and the Gowalla geosocial network. We analyze the theoretically and empirically designated case when the length distribution of the links has the form P(ρ)∼1/ρP(ρ)1/ρ. We show that while previous dimension concepts are not applicable in this case, the new dimension measure still exhibits scaling with two distinct scaling regimes. Our observations suggest that the link length distribution is not sufficient in itself to entirely control the dimensionality of complex networks, and we show that the proposed measure provides information that complements other known measures.  相似文献   

18.
The dynamic behaviors of the complex network are crucially affected by its structural properties, which is an essential issue that has attracted much interest. In this paper, the effects of the community structure on the navigability of complex networks are comprehensively investigated. The networks we explored, each of which is embedded in a KK-dimension Euclidean space based on a landmark based multi-dimensional scaling (LMDS) algorithm, are of scale-free configuration with tunable modularity, obtained by regulating the proportion of edges in and between communities. Pairs of source and target are selected from the nodes in the networks, and the messages are passed along from source to target in this space based on the greedy routing strategy. The extensive experiments we carried out suggest that, the higher navigability, defined by proportion of messages successfully delivered, is related to stronger modularity of the complex networks. In addition, the optimal dimension KK of the embedding Euclidean space is found to be approximately identical to half of the landmark number.  相似文献   

19.
We present magnetic field dependence of phase transition temperature and vortex configuration of superconducting networks based on theoretical study. The applied magnetic field is called “filling field” that is defined by applied magnetic flux (in unit of the flux quantum) per unit loop of the superconducting network. If a superconducting network is composed of very thin wires whose thicknesses are less than coherence length, the de Gennes–Alexander (dGA) theory is applicable. We have already shown that field dependences of transition temperature curves have symmetric behavior about the filling field of 1/2 by solving the dGA equation numerically in square lattices, honeycomb lattices, cubic lattices and those with randomly lack of wires networks. Many experimental studies also show the symmetric behavior. In this paper, we make an explicit theoretical explanation of symmetric behaviors of superconducting network respect to the applied field.  相似文献   

20.
We introduce a new spin-fermion mapping, for arbitrary spin S generating the SU(2) group algebra, that constitutes a natural generalization of the Jordan-Wigner transformation for S = 1/2. The mapping, valid for regular lattices in any spatial dimension d, serves to unravel hidden symmetries. We illustrate the power of the transformation by finding exact solutions to lattice models previously unsolved by standard techniques. We also show the existence of the Haldane gap in S = 1 bilinear nearest-neighbor Heisenberg spin chains and discuss the relevance of the mapping to models of strongly correlated electrons. Moreover, we present a general spin-anyon mapping for the case d < or = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号