首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the interaction between two spherical colloidal particles embedded in the isotropic phase of a nematogenic liquid. The surface of the particles induces wetting nematic coronas that mediate an elastic interaction. In the weak wetting regime, we obtain exact results for the interaction energy and the texture, showing that defects and biaxiality arise, although they are not topologically required. We evidence rich behaviors, including the possibility of reversible colloidal aggregation and dispersion. Complex anisotropic self-assembled phases might be formed in dense suspensions.  相似文献   

2.
We theoretically study binary mixtures of thin and thick hard rods with diameter ratio more extreme than 1:4. The bulk phase diagram of these systems exhibits a triple point, where an isotropic (I) phase coexists with two nematic phases ( N1 and N2) of different composition. Using density functional theory, we predict that the I-N2 interface is completely wet by N1 upon approach of the the I-N1-N2 triple point. This entropic triple point wetting should be experimentally observable in colloidal suspensions of rodlike particles.  相似文献   

3.
The fluid system at the bulk liquid–gas coexistence in a presence of a sinusoidally corrugated substrate exhibits not only the wetting transition, but additionally a first-order, thin–thick transition. The mean-field analysis of this transition based on a simple effective Hamiltonian is valid only in long wavelength limit. In this case the filling transition occurs so close to the wetting temperature, that the behavior of the interface is dominated by fluctuations, therefore the mean-field approach breaks down. We analyze the filling transition with the help of Hamiltonian evaluated from Landau theory. The applicability of our Hamiltonian is not restricted only to the vicinity of the wetting point. We obtain the phase diagram valid beyond the temperature range corresponding to the strong fluctuations regime. It displays more complex dependence on different length scales of the system and includes the old one as a particular case.  相似文献   

4.
Extensive simulations of a hard sphere fluid confined between two planar hard walls show the onset of crystalline layers at the walls at about 98.3% of bulk crystallization density rho(f) independent of the wall separations L(z), and is, hence, a single wall phenomenon. As the bulk density far from the wall rho(b) increases, the thickness of the crystalline film appears to increase logarithmically, with (rho(f)-rho(b)) indicating complete wetting by the hard sphere crystal of the wall-fluid interface. Increasing rho(b) further, we observe a jump in the adsorption which depends on L(z) and corresponds to capillary freezing. The formation of crystalline layers below bulk crystallization, the logarithmic growth of the crystalline film, its independence of L(z), and its clear distinction from capillary freezing lend strong evidence for complete wetting by the hard sphere crystal at the wall-fluid interface.  相似文献   

5.
We study the thickness of wetting layers in the binary-liquid mixture cyclohexane methanol. Far from the bulk critical point, the wetting layer thickness is independent of temperature, resulting from the competition between van der Waals and gravitational forces. Upon approaching the bulk critical temperature [t=(T(c)-T)/T(c)-->0], we observe that the wetting layer thickness diverges as t(-beta) with effective critical exponent beta=0.23+/-0.06. This is characteristic of a broad, intermediate scaling regime for the crossover from van der Waals wetting to critical scaling. We predict beta=beta/3 approximately 0.11, with beta the usual bulk-order parameter critical exponent, showing a small but significant difference with experiment.  相似文献   

6.
The influence of interface porosity on the wetting properties of colloid-polymer mixtures is studied within density functional theory for the Asakura-Oosawa-Vrij model at the surface of a quenched hard-sphere matrix. While the porosity hardly changes the location of the transition from partial to complete wetting at colloidal bulk gas-liquid coexistence, the onset of wetting, as signaled by the first discontinuous layering transition, can be efficiently controlled by tailoring the porosity. We furthermore find that the penetrability of the porous interface induces complete drying into the matrix upon approaching capillary coexistence.  相似文献   

7.
More than two decades ago, in a seminal paper John Cahn proposed scaling arguments for the possibility of a wetting transition in two coexisting fluid phases near the critical point. Since then, Cahn's model has been tested in many fluid systems and further refined by including the real interactions between the fluid and the solid wall. A fascinating consequence of the existence of a wetting transition is the possibility for a transition from weak to strong adsorption in the homogeneous phase. The situation is further enriched in nonstandard geometries having special geometrical constraints. The subject of this review concerns one such situation, where charge-stabilized colloidal particles are suspended in the homogeneous region of a binary liquid mixture. In this case, the preferential adsorption of one of the liquid components on to the colloid surface completely modifies the stability of the particles leading to an aggregation process. Although the exact mechanism underlying the adsorption phenomenon is still debated, it is closely related to the wetting transition. Recent experimental developments concerning the static and dynamic aspects of this phenomenon are reviewed. In addition, the main findings of a theoretical model based on the adsorption-modified electrostatic interactions between the colloidal particles are discussed.  相似文献   

8.
Based on the fact that rubbed groove patterns also affect the anchoring of liquid crystals at substrates,a quartic coupling is included in constructing the surface energy for a liquid crystal cell.The phase diagram and the wetting behaviors of the liquid crystal cell,bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate are discussed by taking the quartic coupling into account.The nematic order increases at the surface while it decreases in the bulk as a result of the introduction of quartic substrate-liquid crystal coupling,indicating that the groove anchoring makes the liquid crystal molecules align more orderly near the substrate than away from it.This causes a different wetting behavior:complete wetting.  相似文献   

9.
Coexistence conditions for prewetting and layering at a hard surface in additive hard sphere polymer solutions, where the solvent particles are smaller than the monomers, have been calculated by density functional methods. Various chain lengths and pressures have been investigated. An unexpected finding is that prewetting in these systems may proceed below the bulk critical pressure. We rationalize this behavior in terms of local properties of the pressure tensor. For longer chains, a different behavior is observed where the systems display a lower wetting pressure, i.e., a low pressure bound for surface wetting.  相似文献   

10.
The properties of the coexisting bulk gas and liquid phases of a polydisperse fluid depend not only on the prevailing temperature but also on the overall parent density. As a result, a polydisperse fluid near a wall will exhibit density-driven wetting transitions inside the coexistence region. We propose a likely topology for the wetting phase diagram, which we test using Monte Carlo simulations of a model polydisperse fluid at an attractive wall, tracing the wetting line inside the cloud curve and identifying the relationship to prewetting.  相似文献   

11.
We report on an ellipsometric experimental study designed to explore the relevance of the wetting phase diagram predicted by liquid state physics of basic models, to the wide class of simple organic liquid films that adsorb from saturated vapour onto planar substrates at room temperature. The wetting properties are explored by measuring adsorption isotherms in the approach to saturation, in particular, for adsorption of n-hexane on a variety of specially constructed substrates (self-assembled monolayers) spanning a wide range of surface energy, and by carrying out the microscopic equivalent of contact angle experiments at saturation. We locate a wetting transition, which in our case is continuous, and then study its properties in detail. The general prediction of the wetting phase diagram, that wetting transitions should be ubiquitous in nature and readily located via control over the substrate field, is supported by our data, but the quantitative nature of the thick film adsorption regime is not in agreement with Lifshitz theory. This conclusion supports the work of a variety of earlier related studies, but contrasts with recent results for adsorption onto the surface of water. In addition, the correlation length determined from our complete wetting adsorption isotherms is mesoscopic, suggesting that equilibrium statistical mechanics of simple models of inhomogeneous fluids cannot explain the data.  相似文献   

12.
Colloidal suspensions of charged latex microspheres in water exhibit liquid-like or crystalline ordering depending on particle interaction and concentration. By virtue of large particle spacing and slow dynamics, colloidal systems offer a unique opportunity to study interfacial structure and dynamics. This paper presents the first reported experimental study of the nucleation rate density, c, of an nonequilibrium (supercooled) colloidal liquid to colloidal crystal first order phase transition. Local and global observations of colloidal crystals growing from a metastable colloidal liquid were used to determine c. Microscopic local observations revealed homogeneous nucleation and constant interface velocity growth of quasispherical crystallites in the bulk and heterogeneous nucleation of a crystalline sheet with lower growth velocity at the cell wall. Complementary global observations of the recrystallization transition made by measuring the time dependence of the suspension transparency (the fraction of transmitted laser light) determined c by fitting this curve to a model based on an extension of Avrami's theory of crystallization.  相似文献   

13.
Based on statistical mechanics for classical fluids, general expressions for hydrodynamic stress in inhomogeneous colloidal suspension are derived on a molecular level. The result is exactly an extension of the Iving-Kirkwood stress for atom fluids to colloidal suspensions where dynamic correlation emerges. It is found that besides the inter-particle distance, the obtained hydrodynamic stress depends closely on the velocity of the colloidal particles in the suspension, which is responsible for the appearance of the solvent-mediated hydrodynamic force. Compared to Brady's stresslets for the bulk stress, our results are applicable to inhomogeneous suspension, where the inhomogeneity and anisotropy of the dynamic correlation should be taken into account. In the near-field regime where the packing fraction of colloidal particles is high, our results can reduce to those of Brady. Therefore, our results are applicable to the suspensions with low, moderate, or even high packing fraction of colloidal particles.  相似文献   

14.
Classical density functional theory (DFT) of inhomogeneous fluids is applied to an explicit solvent ‘semi-primitive’ model (SPM) of ionic solutions to investigate the influence of ionic solutes on the wetting behaviour of a solvent in contact with a neutral or charged planar substrate. The SPM is made up of three species of hard sphere particles with different diameters, interacting via an attractive Yukawa potential to model excluded volume and cohesion. The solvent particles are neutral, while the monovalent anions and cations are oppositely charged. The polar nature of the solvent is modelled by a continuum dielectric permittivity linked to the local solvent density. All three species interact with the impenetrable substrate via an attractive external potential. While excluded volume effects are accurately described by a Rosenfeld ‘fundamental measure’ free energy functional, the short range Yukawa attraction and Coulombic interactions are treated within the mean-field approximation. The ionic solutes are found to have a significant impact on the wetting behaviour of the solvent, in particular on the wetting temperature. Strong electric fields, or long-ranged (weakly screened) Coulombic forces are shown to have the propensity to change the wetting transition from second to first order. The cation–anion size asymmetry leads to charge separation on the liquid–vapour interface of the solution, which in turn can induce a drying transition on the liquid side of liquid–vapour coexistence.  相似文献   

15.
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.  相似文献   

16.
Concentrated suspensions of model colloidal hard spheres at a wall were studied in real space by means of time-resolved fluorescence confocal scanning microscopy. Both structure and dynamics of these systems differ dramatically from their bulk analogs (i.e., far away from a wall). In particular, systems that are a glass in the bulk show significant hexagonal order at a wall. Upon increasing the volume fraction of the colloids, a reentrant melting transition involving a hexatic structure is observed. The last observation points to two-dimensional behavior of matter at walls.  相似文献   

17.
P. Tarazona  R. Evans 《Molecular physics》2013,111(5):1033-1063
We have investigated the behaviour of the pairwise distribution function for Sullivan's model of a gas adsorbed on a solid substrate. We show that in the approach to complete wetting, when a thick film of liquid density is adsorbed on the substrate, long ranged transverse correlations (parallel to the surface) develop at the edge of the film where the density profile of the fluid resembles that of a liquid-gas interface. The long ranged correlations can be attributed to damped capillary-wave-like fluctuations; for a class I wetting situation the damping decreases and the range of the correlations increases and ultimately diverges as the bulk gas pressure approaches the saturated vapour pressure.

Our analysis provides a physical explanation of the long ranged transverse correlations calculated by Foiles and Ashcroft in their recent study of a model of argon at a carbon dioxide substrate. We also predict that long range transverse correlations will occur for the case of adsorption from a dense liquid provided the solid-fluid potential is such that a thick film of gas forms between the substrate and the bulk liquid.  相似文献   

18.
Optical experiments on the wetting properties of liquid 4He and molecular hydrogen are reviewed. Hydrogen films on noble metal surfaces serve as model systems for studying triple point wetting, a continuous transition between wetting and non-wetting. By means of optically excited surface plasmons, the adsorbed film thickness for temperatures around, and far below, the bulk melting temperature is measured, and the physical mechanisms responsible for the transition are elucidated. Possible applications for other experiments in pure and applied research are discussed. Thin films and droplets of liquid helium are studied on cesium surfaces, on which there is a first order wetting transition. Our studies concentrate on dynamical observations via surface plasmon microscopy, which provide insight into the morphology of liquid helium droplets spreading at different temperatures. Features corresponding to pinning forces, the prewetting line, and the Kosterlitz-Thouless transition are clearly observed.  相似文献   

19.
Grain boundary (GB) phase transitions can change drastically the properties of polycrystals. The GB wetting phase transition can occur in the two-phase area of the bulk phase diagram where the liquid (L) and solid (S) phases are in equlibrium. Above the temperature of the GB wetting phase transition a GB cannot exist in equlibrium contact with the liquid phase. The experimental data on GB wetting phase transitions in numerous systems are analysed. The GB wetting tie-line can continue in the one-phase area of the bulk phase diagram as a GB solidus line. This line represents the GB premelting or prewetting phase transitions. The GB properties change drastically when GB solidus line is crossed by a change in the temperature or concentration. The experimental data on GB segregation, energy, mobility and diffusivity obtained in various systems both in polycrystals and bicrystals are analysed. In case if two solid phases are in equilibrium, the GB “solid state wetting” can occur. In this case the layer of the solid phase 2 has to substitute GBs in the solid phase 1. Such GB phase transition occurs if the energy of two interphase boundaries is lower than the GB energy in the phase 1.  相似文献   

20.
Microscale and larger semiconductor crystals have electronic and optical properties that depend on their bulk band structures. When these crystals are reduced into the nanoscale, they enter a new regime in which the electrical and optical properties are no longer influenced solely by their bulk band structures, but are influenced by the crystallite size and shape. In this paper, dimensional confinement and proximity phenomena are examined for colloidal semiconductor nanocrystals in several cases of practical importance. Specifically, we determine the effective binding potentials of selected quantum dots in aqueous environments in various colloidal semiconductor nanocrystals and correlate them with experimentally obtained absorption spectra. We also study fluorescence resonance energy transfer (FRET) between semiconductor crystals connected by short peptide chains as well as the shift in photoluminescence spectra of CdTe nanowires made from a chain of CdTe quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号