首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Ferrocene-poly(styrene)-b-poly[3-(trimethyoxysilyl)propyl methacrylate] (Fc-PS212-PTMSPMA12) was synthesized via atom transfer radical polymerization (ATRP) and characterized. The self-assembly of the resultant polymer was investigated. The organic/inorganic hybrid nanoparticles from self-assembly aggregates of Fc-PS212-PTMSPMA12 including spheres, vesicles, and large compound vesicles (LCVs) were obtained and the morphologies were fixed by a gelation process.  相似文献   

2.
The doubly thermo-responsive triblock copolymer nanoparticles of polystyrene-block-poly(N-isopropylacrylamide)-block-poly[N,N-(dimethylamino) ethyl methacrylate] (PS-b-PNIPAM-b-PDMAEMA) are successfully prepared through the seeded RAFT polymerization in situ by using the PS-b-PNIPAM-TTC diblock copolymer nanoparticles as the seed. The seeded RAFT polymerization undergoes a pseudo-first-order kinetics procedure, and the molecular weight increases with the monomer conversion linearly. The hydrodynamic diameter (D h) of the triblock copolymer nanoparticles increases with the extension of the PDMAEMA block. In addition, the double thermo-response behavior of the PS-b-PNIPAM-b-PDMAEMA nanoparticles is detected by turbidity analysis, temperature-dependent 1H-NMR analysis, and DLS analysis. The seeded RAFT polymerization is believed as a valid method to prepare triblock copolymer nanoparticles containing two thermo-responsive blocks.  相似文献   

3.
The free radical polymerization of N-(p-vinylbenzyl)phthalimide (VBP) “initiated” with the adduct of 2-benzoyloxy-1-phenylethyl and TEMPO (BS-TEMPO) or TEMPO-terminated polystyrene (PS-TEMPO) in N,N-dimethylformamide (DMF) at 125 °C was found to proceed in a living fashion, providing low-polydispersity PVBP and block copolymers of the type PS-b-PVBA, where TEMPO is 2,2,6,6-tetramethylpiperidinyl-1-oxy. Unlike TEMPO-mediated styrene polymerization, the polymerization rate slightly but distinctly depended on the adduct concentration, which was interpretable as a pre-stationary behavior. The hydrolysis of those polymers gave poly(p-aminomethylstyrene) (PAMS) and PS-b-PAMS, and further treatment of the block copolymer with hydrogen chloride provided an amphiphilic block copolymer. The polymeric amphiphile was used as an emulsifier in emulsion polymerization to produce a positively charged polymeric microsphere.  相似文献   

4.
A control strategy for tuning the film morphology of asymmetric polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers (BCPs) is reported. After preparation of the film by spin-coating method, the as-cast films were annealed in different solvent vapor. It is found that chloroform is a wonderful solvent for forming PS-b-P4VP regular pattern. Otherwise, with changing the concentration of PS-b-P4VP, cylindrical or parallel nanostructures could be attained. The PS-b-P4VP films with cylindrical structure are used as template to deposit FePt nanoparticles into the pores. Nanoparticles reaching the bottom of the holes form a disordered magnetic array.  相似文献   

5.
We report here a facile colorimetric sensor based on the N-acetyl-l-cysteine (NALC)-stabilized Ag nanoparticles (NALC–Ag NPs) for detection of Fe3+ ions in aqueous solution. The Ag NPs with an average diameter of 6.55 ± 1.0 nm are successfully synthesized through a simple method using sodium borohydride as reducing agent and N-acetyl-l-cysteine as protecting ligand. The synthesized silver nanoparticles show a strong surface plasmon resonance (SPR) around 400 nm and the SPR intensity decreases with the increasing of Fe3+ concentration in aqueous solution. Based on the linear relationship between SPR intensity and concentration of Fe3+ ions, the as-synthesized water-soluble silver nanoparticles can be used for the sensitive and selective detection of Fe3+ ions in water with a linear range from 80 nM to 80 μM and a detection limit of 80 nM. On the basis of the experimental results, a new detection mechanism of oxidation–reduction reaction between Ag NPs and Fe3+ ions is proposed, which is different from previously reported mechanisms. Moreover, the NALC–Ag NPs could be applied to the detection of Fe3+ ions in real environmental water samples.  相似文献   

6.
The layer-by-layer (LbL) assembled thin films containing tetraamino-thiacalix[4]arenes (1) and tetraamino-calix[4]arenes (2) were used as nanoreactor to synthesize in situ Ag nanoparticles (Ag NPs). UV–vis spectra and AFM images demonstrate that Ag NPs are included in the (1/Ag NPs)n and (2/Ag NPs)n multilayer films. The silver ions are absorbed through cation–π interaction and calix[4]arene-metal ion coordination interaction and are reduced into Ag NPs by calix[4]arenes. TEM images indicated that Ag NPs within aminocalix[4]arene multilayers were highly dispersed and uniform. Moreover, the mean size of Ag NPs is smaller than 10 nm.  相似文献   

7.
The triblock copolymers, poly(styrene-b-isoprene-b-ε-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 μm s−1, respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL28 show the columns morphology formed by it’s self-assembling.  相似文献   

8.
2-Methoxy ethyl acrylate (MEA), a functional monomer was homopolymerized using atom transfer radical polymerization (ATRP) technique with methyl 2-bromopropionate (MBP) as initiator and CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system; polymerization was conducted in bulk at 60 °C and livingness was established by chain extension reaction. The kinetics as well as molecular weight distribution data indicated towards the controlled nature of polymerization. The initiator efficiency and the effect of initiator concentration on the rate of polymerization were investigated. The polymerization remained well-controlled even at low catalyst concentration of 10% relative to initiator. The influence of different solvents, viz. ethylene carbonate and toluene on the polymerization was investigated. End-group analysis for the determination of high degree of functionality of PMEA was determined with the help of 13C{1H} NMR spectra. Chain extension experiment was conducted with PMEA macroinitiator for ATRP of acrylonitrile (AN) in ethylene carbonate at 70 °C using CuCl/bpy as catalyst system. The composition of individual blocks in PMEA-b-PAN copolymers was determined using 1H NMR spectra.  相似文献   

9.
Controlled free radical polymerization of sugar-carrying methacrylate, 3-O-methacryloyl-1,2 : 5,6-di-O-isopropylidene-d-glucofuranose (MAIpGlc) was achieved by the atom transfer radical polymerization (ATRP) technique with an alkyl halide/copper-complex system in veratrole at 80°C. The time–conversion first-order plot was linear and the number-average molecular weight increased in direct proportion to the ratio of the monomer conversion to the initial initiator concentration, providing PMAIpGlc with a low polydispersity. The sequential addition of the two monomers styrene (S) and MAIpGlc afforded a block copolymer of the type PS-b-PMAIpGlc. The acidolysis of the homo- and block copolymers gave well-defined glucose-carrying water-soluble polymers PMAGlc and PS-b-PMAGlc, respectively. The amphiphilic PS-b-PMAGlc block copolymer exhibited a microdomain surface morphology with spherical PS domains in a PMAGlc matrix. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2473–2481, 1998  相似文献   

10.
A green approach for forming silver nanoparticles (Ag NPs) on ecofriendly highly absorbent nonwoven fabrics was investigated. The fiber blending ratio of highly absorbent nonwoven fabrics was optimized by simulated body fluid (SBF) and water absorption. SBF and water absorption ratios reached 42 and 42.9 times after addition of 50 wt% highly absorbent fibers. The Ag NPs were characterized by UV-visible spectrometry (UV-Vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV-Vis and XRD images confirmed the presence of Ag NPs. TEM observation revealed that Ag NPs were distributed at 5–10 nm. The results of antimicrobial activity showed that Ag NP dope is effective for producing antimicrobial nonwoven fabrics against E. coli and S. aureus.  相似文献   

11.
Silver nanoparticles (Ag NPs) of improved thermal stability against long‐term aggregation were prepared using the polystyrene‐b‐poly(4‐vinylpyridine)‐b‐polystyrene (PS‐b‐P4VP‐b‐PS) triblock copolymer as a multidentate ligand. First, PS‐b‐P4VP‐b‐PS was synthesized by sequential reversible addition–fragmentation transfer (RAFT) polymerization of styrene and 4‐vinylpydine using a trithiocarbonate chain transfer agent (CTA). Then Ag NPs were obtained by in situ reduction of silver nitrate using PS‐b‐P4VP‐b‐PS as a multidentate ligand. The obtained Ag NPs were stable in solution for at least 24 h while being heated at 110°C. The effect of the molar ratio of N atoms of the P4VP chain segment and AgNO3 on the stability of Ag NPs was studied, and the results suggested that Ag NPs were very stable even if the molar ratio of N atoms of the P4VP chain segment and AgNO3 was very low. This method is promising to scale up the preparation of metal NPs with good dispersibility and thermal stability, which still remains challenging. To further improve its thermal stability, 1,4‐dibromobutane was used to chemically crosslink the P4VP chain segment in solution. However, the results proved that the crosslink method is infeasible to further improve the thermal stability of Ag NPs in this system.  相似文献   

12.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

13.
Di Hu 《European Polymer Journal》2009,45(12):3326-5707
Polystyrene-block-poly(ethylene oxide) alternating multiblock copolymer (PS-alt-PEO) was synthesized with the combination of atom transfer radical polymerization (ATRP) and Huisgen 1,3-dipolar cycloaddition (i.e., click chemistry). The copolymer has been characterized by means of Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The PS-alt-PEO alternating multiblock copolymer was incorporated into epoxy resin to investigate the behavior of reaction-induced microphase separation, which has been compared to the case of the thermosets containing PS-b-PEO diblock copolymer. The morphology of epoxy thermosets containing PS-alt-PEO alternating multiblock copolymer were investigated by means of atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS) and the nanostructures were detected in all the thermosetting blends investigated. In marked contrast to the case of the thermosets containing PS-b-PEO diblock copolymer, the thermosets containing PS-alt-PEO multiblock copolymer displayed disordered nanostructures, which have been interpreted on the basis of the restriction of the alternating multiblock topology of the block on the formation of the nanostructures via reaction-induced microphase separation.  相似文献   

14.
We report a new approach toward preparing self-assembled hydrogen-bonded complexes having vesicle and patched spherical structures from two species of block copolymers in nonselective solvents. Two diblock copolymers, poly(styrene-b-vinyl phenol) (PS-b-PVPh) and poly(methyl methacrylate-b-4-vinylpyridine) (PMMA-b-P4VP), were synthesized through anionic polymerization. The assembly of vesicles from the intermolecular complex formed after mixing PS-b-PVPH with PMMA-b-P4VP in THF was driven by strong hydrogen bonding between the complementary binding sites on the PVPH and P4VP blocks. In contrast, well-defined patched spherical micelles formed after blending PS-b-PVPh with PMMA-b-P4VP in DMF: the weaker hydrogen bonds formed between the PVPh and P4VP blocks in DMF, relative to those in THF, resulted in the formation of spherical micelles having compartmentalized coronas consisting of PS and PMMA blocks.  相似文献   

15.
Present study used ecofriendly, cost efficient and easy method for synthesis of silver nanoparticles (Ag NPs) at the room temperature by Thymus Kotschyanus extract as reducing and capping agent. Various analytical technique including UV–Vis absorption spectroscopy determined presence of Ag NPs in the solution, the functional groups of Thymus Kotschyanus extract in the reduction and capping process of Ag NPs are approved by FT‐IR, crystallinity with the fcc plane approved from the X‐ray diffraction (XRD) pattern, energy dispersive spectroscopy (EDS) determined existence of elements in the sample, surface morphology, diverse shapes and size of present Ag NPs were showed by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Beginning and end destroy temperature of present silver nanoparticles were determined by thermal gravimetric spectroscopy (TGA). In addition, antibacterial, antioxidant and cytotoxicity properties of Ag NPs were studied. Agar disk and agar well diffusion are the methods to determined antibacterial properties of synthesized Ag NPs. Also MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were recognized by macro broth dilution assay. DPPH free radical scavenging assay was used for antioxidant property and compare to butylated hydroxytoluene (BHT) as standard antioxidant that showed high antioxidant activity more than BHT. Synthesized Ag NPs have great cell viability in a dose depended manner and demonstrate that this method for synthesis silver nanoparticles provided nontoxic. The average diameter of synthesized Ag NPs was about 50–60 nm.  相似文献   

16.
Poly(N,N′‐methylenebisacrylamide–4‐vinylpyridine) (P(MBA‐4VP)) nanowires loaded with silver nanoparticles (Ag NPs) have been fabricated by silver metallogel template copolymerization, and subsequently, silver ions are reduced instead of the template being removed. Ag NPs with a diameter of 5–15 nm were dispersed throughout the core of P(MBA‐4VP) nanowires. The size and distribution of the formed Ag NPs could be finely controlled by reduction time. The pH sensitivity of P(MBA‐4VP) nanowires offers the possibility of Ag NP release from the nanowires under acidic conditions. The photocatalytic performance of the P(MBA‐4VP) nanowires loaded with Ag NPs was evaluated for the degradation of methylene blue (MB) under UV light irradiation. Their rate of degradation is dependent on the content and size of the Ag NPs, as well as the pH values of the MB solution. Moreover, the P(MBA‐4VP) nanowires loaded with Ag NPs exhibited high photostability, and the photocatalytic efficiency reduced by only 1.81 % after being used three times.  相似文献   

17.
In this paper, grafted polyacrylamide from the surface of glass fibers was prepared by surface initiated atom transfer radical polymerization in order to control the matrix surface structure and properties. The uniform and stable grafted polymer layer was utilized to prepare silver ions complexes, and then the silver ions were reduced by AlLiH4 to form in situ silver nanoparticles. The structure, composition, properties and surface morphology of the modified glass fibers were characterized by X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. The antibacterial activities of modified glass fibers against E. coli, B. subtilis and S. cerevisiae had been studied respectively by Shake Flask Method. The results show that the antibacterial ratio of Ag nanoparticles loaded glass fibers is significantly improved than that of Ag+ loaded, and the highest antibacterial ratio is 72.2% against E. coli.  相似文献   

18.
A series of supramolecular block copolymers were prepared using poly(styrene)-b-poly(4-vinylpyridine)(PS-b-P4VP) which coordinated with cobalt dodecyl benzene sulfonate (Co(DBS)2) in tetrahydrofuran (THF). Fourier transformation infrared spectroscopy (FTIR), UV-vis absorption spectroscopy (UV) and differential scanning calorimetry (DSC) showed that Co(DBS)2 coordinated to the lone electron pairs of the pyridine nitrogens in the P4VP block and leaded to complexes. The supramolecular block copolymers could self-assemble into nanosized micelles with different shapes and dimensions in THF, depending on the number of Co(DBS)2 groups per 4-vinylpyridine (repeat unit was denoted by n) and the ratio between PS block length and P4VP block length. Transmission electron microscopy (TEM) results showed that when the number of repeat units of P4VP was more than that of PS, micelles with different interesting shapes such as spheres, rods, vesicles, large compound vesicles (LCVs) and the large compound micelles (LCMs) were observed if increasing the content of the Co(DBS)2 in PS-b-P4VP copolymer/THF solution; When the number of repeat units of P4VP was less than that of PS, the micelle morphologies changed from spheres to rods, bi-layer, and LCMs if the Co(DBS)2 content was increased progressively.  相似文献   

19.
Hydrothermal treatment of nano-structured wood, prepared by precision grinding, with cationic silver was found to give silver nanoparticles (Ag NPs) of 2–40-nm size range embedded in the wood tissue. The size and distribution of Ag NPs depended strongly on the starting silver ion concentration and reaction temperature. Higher temperature tended to give larger size and wider distribution. The obtained Ag NPs were characterized using various methods, including high-resolution transmission electron microscopy, UV–visible spectroscopy, and X-ray diffraction. The antibacterial effect of the product against Escherichia coli was evaluated by static and dynamic culture experiments, revealing that the Ag NPs-loaded nano-wood materials have great promise as antimicrobial agents against E. coli.  相似文献   

20.
In the developing nanotechnology world, numerous attempts have been made to prepare the nobel metallic nanoparticles (NPs), which can improve their applicability in diverse fields. In the present work, the biosynthesis of silver (Ag) NPs has been successfully achieved through the medicinal plant extract (PE) of G. resinifera and effectively used for the catalytic and antibacterial applications. The size dependant tuneable surface plasmon resonance (SPR) properties attained through altering precursor concentrations. The X-ray and selected area diffraction pattern for Ag NPs revealed the high crystalline nature of pure Ag NPs with dominant (111) phase. The high-resolution TEM images show the non-spherical shape of NPs shifting from spherical, hexagonal to triangular, with wide particle size distribution ranging from 13 to 44 nm. Accordingly, the dual-band SPR spectrum is situated in the UV–Vis spectra validating the non-spherical shape of Ag NPs. The functional group present on the Ag NPs surface was analysed by FT-IR confirms the capping and reducing ability of methanolic PE G. resinifera. Further, the mechanism of antimicrobial activity studied using electron microscope showed the morphological changes with destructed cell walls of E. coli NCIM 2931 and S. aureus NCIM 5021 cells, when they treated with Ag NPs. The Ag NPs were more effective against S. aureus and E. coli with MIC 128 μg/ml as compared to P. aeruginosa NCIM 5029 with MIC 256 μg/ml. Apart from this, the reduction of toxic organic pollutant 4-NP to 4-AP within 20 min reveals the excellent catalytic activity of Ag NPs with rate constant k = 15.69 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号