首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the global and local convergence properties of a class of Lagrangian barrier methods for solving nonlinear programming problems. In such methods, simple bound constraints may be treated separately from more general constraints. The objective and general constraint functions are combined in a Lagrangian barrier function. A sequence of such functions are approximately minimized within the domain defined by the simple bounds. Global convergence of the sequence of generated iterates to a first-order stationary point for the original problem is established. Furthermore, possible numerical difficulties associated with barrier function methods are avoided as it is shown that a potentially troublesome penalty parameter is bounded away from zero. This paper is a companion to previous work of ours on augmented Lagrangian methods.

  相似文献   


2.
We develop a mass conservative Eulerian‐Lagrangian control volume scheme (ELCVS) for the solution of the transient advection‐diffusion equations in two space dimensions. This method uses finite volume test functions over the space‐time domain defined by the characteristics within the framework of the class of Eulerian‐Lagrangian localized adjoint characteristic methods (ELLAM). It, therefore, maintains the advantages of characteristic methods in general, and of this class in particular, which include global mass conservation as well as a natural treatment of all types of boundary conditions. However, it differs from other methods in that class in the treatment of the mass storage integrals at the previous time step defined on deformed Lagrangian regions. This treatment is especially attractive for orthogonal rectangular Eulerian grids composed of block elements. In the algorithm, each deformed region is approximated by an eight‐node region with sides drawn parallel to the Eulerian grid, which significantly simplifies the integration compared with the approach used in finite volume ELLAM methods, based on backward tracking, while retaining local mass conservation at no additional expenses in terms of accuracy or CPU consumption. This is verified by numerical tests which show that ELCVS performs as well as standard finite volume ELLAM methods, which have previously been shown to outperform many other well‐received classes of numerical methods for the equations considered. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

3.
Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions   总被引:1,自引:0,他引:1  
A new class of generalized convex set-valued functions, termed nearly-subconvexlike functions, is introduced. This class is a generalization of cone-subconvexlike maps, nearly-convexlike set-valued functions, and preinvex set-valued functions. Properties for the nearly-subconvexlike functions are derived and a theorem of the alternative is proved. A Lagrangian multiplier theorem is established and two scalarization theorems are obtained for vector optimization.  相似文献   

4.
A variable-penalty alternating directions method for convex optimization   总被引:6,自引:0,他引:6  
We study a generalized version of the method of alternating directions as applied to the minimization of the sum of two convex functions subject to linear constraints. The method consists of solving consecutively in each iteration two optimization problems which contain in the objective function both Lagrangian and proximal terms. The minimizers determine the new proximal terms and a simple update of the Lagrangian terms follows. We prove a convergence theorem which extends existing results by relaxing the assumption of uniqueness of minimizers. Another novelty is that we allow penalty matrices, and these may vary per iteration. This can be beneficial in applications, since it allows additional tuning of the method to the problem and can lead to faster convergence relative to fixed penalties. As an application, we derive a decomposition scheme for block angular optimization and present computational results on a class of dual block angular problems. This material is based on research supported by the Air Force Office of Scientific Research Grant AFOSR-89-0410 and by NSF Grants CCR-8907671, CDA-9024618 and CCR-9306807.  相似文献   

5.
Di Pillo和Grippo提出的含参数C〉0的增广Lagrangian函数中,使用了最大函数,该函数可能在无穷多个点处不可微.为了克服这个问题,濮定国在2004年提出了一类带新的NCP函数的乘子法.该方法在增广Lagrangian函数和原问题之间存在很好的等价性;同时该方法具有全局收敛性,且在适当假设下,具有超线性收敛率.但是在该方法中,要求参数C充分大.为了实现算法及提高算法效率,本文给出了一个有效选择参数C的方法.  相似文献   

6.
本文提出了求解光滑不等式约束最优化问题新的乘子法,在增广Lagrangian函数中,使用了新的NCP函数的乘子法.该方法在增广Lagrangian函数和原问题之间存在很好的等价性;同时该方法具有全局收敛性,且在适当假设下,具有超线性收敛率.本文给出了一个有效选择参数C的方法.  相似文献   

7.
A family of ELLAM (Eulerian–Lagrangian localized adjoint method) schemes is developed and analyzed for linear advection-diffusion-reaction transport partial differential equations with any combination of inflow and outflow Dirichlet, Neumann, or flux boundary conditions. The formulation uses space-time finite elements, with edges oriented along Lagrangian flow paths, in a time–stepping procedure, where space-time test functions are chosen to satisfy a local adjoint condition. This allows Eulerian–Lagrangian concepts to be applied in a systematic mass-conservative manner, yielding numerical schemes defined at each discrete time level. Optimal-order error estimates and superconvergence results are derived. Numerical experiments are performed to verify the theoretical estimates. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 739–780, 1998  相似文献   

8.
Lagrangian Duality and Cone Convexlike Functions   总被引:1,自引:0,他引:1  
In this paper, we consider first the most important classes of cone convexlike vector-valued functions and give a dual characterization for some of these classes. It turns out that these characterizations are strongly related to the closely convexlike and Ky Fan convex bifunctions occurring within minimax problems. Applying the Lagrangian perturbation approach, we show that some of these classes of cone convexlike vector-valued functions show up naturally in verifying strong Lagrangian duality for finite-dimensional optimization problems. This is achieved by extending classical convexity results for biconjugate functions to the class of so-called almost convex functions. In particular, for a general class of finite-dimensional optimization problems, strong Lagrangian duality holds if some vector-valued function related to this optimization problem is closely K-convexlike and satisfies some additional regularity assumptions. For K a full-dimensional convex cone, it turns out that the conditions for strong Lagrangian duality simplify. Finally, we compare the results obtained by the Lagrangian perturbation approach worked out in this paper with the results achieved by the so-called image space approach initiated by Giannessi.  相似文献   

9.
New results on a class of exact augmented Lagrangians   总被引:3,自引:0,他引:3  
In this paper, a new continuously differentiable exact augmented Lagrangian is introduced for the solution of nonlinear programming problems with compact feasible set. The distinguishing features of this augmented Lagrangian are that it is radially unbounded with respect to the multiplier and that it goes to infinity on the boundary of a compact set containing the feasible region. This allows one to establish a complete equivalence between the unconstrained minimization of the augmented Lagrangian on the product space of problem variables and multipliers and the solution of the constrained problem.The author wishes to thank Dr. L. Grippo for having suggested the topic of this paper and for helpful discussions.  相似文献   

10.
A generally nonconvex optimization problem with equality constraints is studied. The problem is introduced as an “inf sup” of a generalized augmented Lagrangian function. A dual problem is defined as the “sup inf” of the same generalized augmented Lagrangian. Sufficient conditions are derived for constructing the augmented Lagrangian function such that the extremal values of the primal and dual problems are equal. Characterization of a class of augmented Lagrangian functions which satisfy the sufficient conditions for strong duality is presented. Finally, some examples of functions and primal-dual problems in the above-mentioned class are presented.  相似文献   

11.
In this paper we present a class of polynomial primal-dual interior-point algorithms for linear optimization based on a new class of kernel functions. This class is fairly general and includes the classical logarithmic function, the prototype self-regular function, and non-self-regular kernel functions as special cases. The analysis of the algorithms in the paper follows the same line of arguments as in Bai et al. (SIAM J. Optim. 15:101–128, [2004]), where a variety of non-self-regular kernel functions were considered including the ones with linear and quadratic growth terms. However, the important case when the growth term is between linear and quadratic was not considered. The goal of this paper is to introduce such class of kernel functions and to show that the interior-point methods based on these functions have favorable complexity results. They match the currently best known iteration bounds for the prototype self-regular function with quadratic growth term, the simple non-self-regular function with linear growth term, and the classical logarithmic kernel function. In order to achieve these complexity results, several new arguments had to be used. This research is partially supported by the grant of National Science Foundation of China 10771133 and the Program of Shanghai Pujiang 06PJ14039.  相似文献   

12.
A new Lagrangian formulation for steady three dimensional inviscid flow over rigid bodies is developed. First, the continuity equation is eliminated by the use of two stream functions. This is followed by a transformation to new independent variables, two of which are these stream functions and the third one is a Lagrangian time distinct from the Eulerian time. This Lagrangian formulation with the use of Lagrangian time requires only three independent variables and allows the free boundary problem of flow with shock wave to be rendered a fixed boundary one thereby making it easier to solve. In the Newtonian limit the governing equations reduce to the geodesic equations of the body surface. For flow past two-dimensional bodies, bodies of revolution, and conical bodies and wings, the problems are solved to within quadrature. All known Newtonian flow solutions are found to be special cases of the present theory.  相似文献   

13.
1.引言 CG法对于变量个数很多的问题,是很有用的.1970年后它有了许多改进和发展,CCG法以正定圆锥函数为基础[1],它的一般方法是:设圆锥函数为 2]其中: V= V(x)=1+ aTx ≠ 0;, r ∈R1为常量; a,g ∈ Rn为常向量;x ∈ Rn为变向量;A∈Rn×n为对称正定矩阵.算法[1]:预先给出初始近似点x0∈ Rn及初始搜索方向 p0;满足:其中“I”是单位矩阵, V0= V(x0)= 1+ atx0及记号“”是函数的梯度.迭代格式为: xk+1= xk +λkpk,k= 0,1,2,…(3…  相似文献   

14.
In this paper, an augmented Lagrangian method is proposed for binary quadratic programming (BQP) problems based on a class of continuous functions. The binary constraints are converted into a class of continuous functions. The approach reformulates the BQP problem as an equivalent augmented Lagrangian function, and then seeks its minimizer via an augmented Lagrangian method, in which the subproblem is solved by Barzilai–Borwein type method. Numerical results are reported for max-cut problem. The results indicate that the augmented Lagrangian approach is promising for large scale binary quadratic programming by the quality of the near optimal values and the low computational time.  相似文献   

15.
针对一般的非线性规划问题,利用某些Lagrange型函数给出了一类Lagrangian对偶问题的一般模型,并证明它与原问题之间存在零对偶间隙.针对具体的一类增广La- grangian对偶问题以及几类由非线性卷积函数构成的Lagrangian对偶问题,详细讨论了零对偶间隙的存在性.进一步,讨论了在最优路径存在的前提下,最优路径的收敛性质.  相似文献   

16.
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.  相似文献   

17.
The Lagrangian function in the conventional theory for solving constrained optimization problems is a linear combination of the cost and constraint functions. Typically, the optimality conditions based on linear Lagrangian theory are either necessary or sufficient, but not both unless the underlying cost and constraint functions are also convex.We propose a somewhat different approach for solving a nonconvex inequality constrained optimization problem based on a nonlinear Lagrangian function. This leads to optimality conditions which are both sufficient and necessary, without any convexity assumption. Subsequently, under appropriate assumptions, the optimality conditions derived from the new nonlinear Lagrangian approach are used to obtain an equivalent root-finding problem. By appropriately defining a dual optimization problem and an alternative dual problem, we show that zero duality gap will hold always regardless of convexity, contrary to the case of linear Lagrangian duality.  相似文献   

18.
In this paper we propose a unified formulation to introduce Lagrangian and semi-Lagrangian velocity and displacement methods for solving the Navier–Stokes equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. In particular, we propose two new second-order characteristics methods in terms of the displacement, one semi-Lagrangian and the other one pure Lagrangian. The pure Lagrangian displacement methods are useful for solving free surface problems and fluid-structure interaction problems because the computational domain is independent of the time and fluid–solid coupling at the interphase is straightforward. However, for moderate to high-Reynolds number flows, they can lead to high distortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the transformation to the identity. In order to assess the performance of the obtained numerical methods, we solve different problems in two space dimensions. In particular, numerical results for a sloshing problem in a rectangular tank and the flow in a driven cavity are presented.  相似文献   

19.
A new inexact-restoration method for nonlinear programming is introduced. The iteration of the main algorithm has two phases. In Phase 1, feasibility is improved explicitly; in Phase 2, optimality is improved on a tangent approximation of the constraints. Trust regions are used for reducing the step when the trial point is not good enough. The trust region is not centered in the current point, as in many nonlinear programming algorithms, but in the intermediate more feasible point. Therefore, in this semifeasible approach, the more feasible intermediate point is considered to be essentially better than the current point. This is the first method in which intermediate-point-centered trust regions are combined with the decrease of the Lagrangian in the tangent approximation to the constraints. The merit function used in this paper is also new: it consists of a convex combination of the Lagrangian and the nonsquared norm of the constraints. The Euclidean norm is used for simplicity, but other norms for measuring infeasibility are admissible. Global convergence theorems are proved, a theoretically justified algorithm for the first phase is introduced, and some numerical insight is given.  相似文献   

20.
In this paper, we carry on the analysis (introduced in [4] and developed in [2,7]) of optimality conditions for extremum problems having infinite-dimensional image, in the case of unilateral constraints. This is done by associating to the feasible set a special multifunction. It turns out that the classic Lagrangian multiplier functions can be factorized into a constant term and a variable one; the former is the gradient of a separating hyperplane as introduced in [4,5]; the latter plays the role of selector of the above multifunction. Finally, the need of enlarging the class of Lagrangian multiplier functions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号