首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

2.
Nanocrystalline CaCu3Ti4O12 powders with particle sizes of 50–90 nm were synthesized by a simple method using Ca(NO3)2·4H2O, Cu(NO3)2·4H2O, titanium(diisoproproxide) bis(2,4-pentanedionate) and freshly extracted egg white (ovalbumin) in aqueous medium. The synthesized precursor was characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at above 400 °C. The precursor was calcined at 700 and 800 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, FTIR, SEM and TEM. Sintering of the powders was conducted in air at 1100 °C for 16 h. The XRD results indicated that all sintered samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CuO, although the sintered sample of the 700 °C calcined powders contained some amount of CaTiO3. SEM micrographs showed the average grain sizes of 12.0±7.8 and 15.5±8.9 μm for the sintered CaCu3Ti4O12 ceramics prepared using the CaCu3Ti4O12 powders calcined at 700 and 800 °C, respectively. The sintered samples exhibit a giant dielectric constant, ε of ∼ 1.5–5×104. The dielectric behavior of both samples exhibits Debye-like relaxation, and can be explained based on a Maxwell–Wagner model. PACS 77.22.Gm; 81.05.Je; 81.07.Wx; 81.20.Ev  相似文献   

3.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

4.
The effects of dopant on the electrochemical properties of spinel-type Li3.97M0.1Ti4.94O12 (M = Mn, Ni, Co) and Li(4-x/3)CrxTi(5-2x/3)O12(x = 0.1, 0.3, 0.6, 0.9, 1.5) were systematically investigated. Charge-discharge cycling were performed at a constant current density of 0.5 mA/cm2 between the cut-off voltages of 3.0 and 1.0 V, the experimental results showed that Cr3+ dopant improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Mn3+ and Ni3+ slightly decreased the capacity of the Li4Ti5O12. Dopants such as Co3+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

5.
L.P. Teo 《Ionics》2017,23(2):309-317
In this work, Li2SnO3 has been synthesized by the sol–gel method using acetates of lithium and tin. Thermogravimetric analysis (TGA) has been applied to the precursor of Li2SnO3 to determine the suitable calcination temperature. The formation of the compound calcined at 800 °C for 9 h has been confirmed by X-ray diffraction (XRD) analysis. The Li2SnO3 is then pelletized and electrically characterized by using electrochemical impedance spectroscopy (EIS) in the frequency range from 50 Hz to 1 MHz. The complex impedance spectra clearly show the dominating presence of the grain boundary effect on electrical properties whereas the complex modulus plots reveal two semicircles which are due to the grain (bulk) and grain boundary. The spectra of imaginary parts of both impedance and modulus versus frequency show the existence of peaks with the modulus plots exhibiting two peaks that are ascribed to the grain and grain boundary of the material. The peak maximum shifts to higher frequency with an increase in temperature and the broad nature of the peaks indicates the non-Debye nature of Li2SnO3. The activation energy associated with the dielectric relaxation obtained from the electrical impedance spectra is 0.67 eV. From the electric modulus spectra, the activation energies related to conductivity relaxation in the grain and grain boundary of Li2SnO3 are 0.59 and 0.69 eV, respectively. The conductivity–temperature relationship is thermally assisted and obeys the Arrhenius rule with the activation energy of 0.66 eV. The conduction mechanism of Li2SnO3 is via hopping.  相似文献   

6.
The lead pyrophosphate, Pb2P2O7, compound was prepared by conventional solid-state reaction and identified by X-ray powder diffractometer. Pb2P2O7 has a triclinic structure whose electrical properties were studied using impedance spectroscopy technique. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies E g = 0.66 eV and E gb = 0.67 eV, respectively. The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

7.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

8.
In the present paper, we describe utilization of cathode active material as anode active material, for example, Li2MnSiO4. The lithium manganese silicate has been successfully synthesized by solid-state reaction method. The X-ray diffraction pattern confirms the orthorhombic structure with Pmn2 1 space group. The Li/Li2MnSiO4 cell delivered the initial discharge capacity of 420 mA h g−1, which is 110 mA h g−1 higher than graphitic anodes. The electrochemical reversibility and solid electrolyte interface formation of the Li2MnSiO4 electrode was emphasized by cyclic voltammetry.  相似文献   

9.
A new member of the family of garnets with fast lithium ion conduction has been found with the composition Li7La3Hf2O12. The anion arrangement corresponds to the oxygen framework in garnets, e.g., in Ca3Fe2Si3O12. Hafnium is coordinated octahedrally while the lanthanum environment can be described as a distorted cube. Lithium occupies a large number of positions with tetrahedral, trigonal planar, and metaprismatic coordination. Li7La3Hf2O12 shows a lithium bulk ion conductivity of 2.4 × 10−4 Ω−1 cm−1 at room temperature with an activation energy of 0.29 eV.  相似文献   

10.
Li1 .2V3O8 and Cu-doped Li1.2V3O8 were prepared at a temperature as low as 300 °C by a sol-gel method. The structure, morphology, and electrochemical performance of the as-prepared samples were characterized by means of X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy, and the galvanostatic discharge–charge techniques. It is found that the Cu-doped Li1.2V3O8 sample exhibits less capacity loss during repeated cycling than the undoped one. The Cu-doped Li1.2V3O8 sample demonstrates the first discharge capacity of 275.9 mAh/g in the range of 3.8–1.7 V at a current rate of 30 mA/g and remains at a stable discharge capacity of 264 mAh/g within 30 cycles. Furthermore, the possible role that copper plays in enhancing the cycleability of Li1.2V3O8 has also been elucidated.  相似文献   

11.
Photopyroelectric spectroscopy is used to study the band-gap energy of the ceramic (ZnO + xSb2O3), x = 0.1 - 1.5 mol% and the ceramic (ZnO + 0.4 mol%  Bi2O3 + xSb2O3), x = 0 - 1.5 mol% sintered at isothermal temperature, 1280 °C, for 1 and 2 hours. The wavelength of incident light, modulated at 9 Hz, is kept in the visible range and the photopyroelectric spectrum with reference to doping level is discussed. The band-gap energy is reduced from 3.2 eV, for pure ZnO, to 2.86, 2.83 eV for the samples without Bi2O3at 0.1 mol% of Sb2O3 for 1 and 2 hours of sintering time, respectively. It is reduced to 2.83, 2.80 eV for the samples with Bi2O3 at 0 mol% of Sb2O3 for 1 and 2 hours of sintering time, respectively. The steepness factor σA which characterizes the slop of exponential optical absorption is discussed with reference to the doping level. The phase constitution is determined by XRD analysis; microstructure and compositional analysis of the selected areas are analyzed using SEM and EDX.  相似文献   

12.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

13.
In this study, well-crystallized Li4Mn5O12 powder was synthesized by a self-propagating combustion method using citric acid as a reducing agent. Various conditions were studied in order to find the optimal conditions for the synthesis of pure Li4Mn5O12. The precursor obtained was then annealed at different temperatures for 24 h in a furnace. X-ray diffraction results showed that Li4Mn5O12 crystallite is stable at relatively low temperature of 400 °C but decompose to spinel LiMn2O4 and monoclinic Li2MnO3 at temperatures higher than 500 °C. The prepared samples were also characterized by FESEM and charge-discharge tests. The result showed that the specific capacity of 70.7 mAh/g was obtained within potential range of 4.2 to 2.5 V at constant current of 1.0 mA. The electrochemical performances of Li4Mn5O12 material was further discussed in this paper.  相似文献   

14.
Li1,3Ti0,7Al0,3(PO4)3 (LATP) powder was obtained by a conventional melt-quenching method and consolidated by field-assisted sintering technology (FAST) at different temperatures. Using this technique, the samples could be sintered to relative densities in the range of 93 to 99 % depending on the sintering conditions. Ionic and thermal conductivity were measured and the results are discussed under consideration of XRD and SEM analyses. Thermal conductivity values of 2 W/mK and ionic conductivities of 4?×?10?4 Scm?1 at room temperature were obtained using relatively large particles and a sintering temperature of 1000 °C at an applied uniaxial pressure of 50 MPa.  相似文献   

15.
The Li4Ti5O12 is applied in lithium ion batteries as anode material, which can be synthesized by various synthesis techniques. In this study, the molten salt synthesis technique at low temperatures, i.e. 350 °C, was applied to synthesize Li4Ti5O12. Surprisingly, the Li4Ti5O12 was not formed according to XRD analysis, which raised question about the stability range of Li4Ti5O12. To investigate the stability of Li4Ti5O12 at low temperatures, the high-temperature calcined Li4Ti5O12 powder was equilibrated in the LiCl-KCl eutectic salt at 350 °C. The result of experiment revealed that the Li4Ti5O12 is not decomposed. Results of ab initio calculations also indicated that the Li4Ti5O12 phase is a stable phase at 0 K. The products of molten salt synthesis technique were then annealed at 900 °C, which resulted in the Li4Ti5O12 formation. It was concluded that the Li4Ti5O12 is a stable phase at low temperatures and the reasons for not forming the Li4Ti5O12 by molten salt technique at low temperature are possibly related to activation energy and kinetic barriers. The Li4Ti5O12 formation energy is also very small, due to the results of ab initio calculations.  相似文献   

16.
M. Ganesan 《Ionics》2007,13(5):379-385
Lithium lanthanoid silicates are projected as promising solid electrolytes for solid-state high-temperature lithium batteries. Synthesis of Li1−x Sm1+x SiO4 (x = 0.2 to 0.6) was carried using sol–gel method, and these compounds were characterized by thermogravimetry differential thermal analysis, X-ray diffraction, Fourier transform infrared, and SEM. Impedance measurements were carried out at different temperatures, and conductivity at different temperatures was calculated. The effect of an increase of samarium content on the conductivity of the solid electrolyte was studied in this paper. It was found that less samarium content exhibits good conductivity at higher temperatures.  相似文献   

17.
In order to study the influence of powder calcination temperature on lithium ion conductivity, synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) was calcined at temperatures between 750 and 900 °C. The shape and size of the particles were characterized employing scanning electron microscopy (SEM), and specific surface area of the obtained powder was measured. The crystallinity grade of different heat-treated powders was calculated from XRD spectra. Posteriorly, all powders were sintered at 1100 °C employing field-assisted sintering (SPS), and the electrical properties were correlated to the calcination conditions. The highest ionic conductivity was observed for samples made out of powders calcined at 900 °C.  相似文献   

18.
Variable chain length di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks were prepared by application of a sol-gel strategy. These materials, designated as di-urethanesils (represented as d-Ut(Y′), where Y′ indicates the average molecular weight of the polymer segment), were doped with lithium triflate (LiCF3SO3). The two host hybrid matrices used, d-Ut(300) and d-Ut(600), incorporate POE chains with approximately 6 and 13 (OCH2CH2) repeat units, respectively. All the samples studied, with compositions ∞ > n ≥ 1 (where n is the molar ratio of (OCH2CH2) repeat units per Li+), are entirely amorphous. The di-urethanesils are thermally stable up to at least 200 °C. At room temperature the conductivity maxima of the d-Ut(300)- and d-Ut(600)-based di-urethanesil families are located at n = 1 (approximately 2.0 × 10−6 and 7.4 × 10−5 Scm−1, respectively). At about 100 °C, both these samples also exhibit the highest conductivity of the two electrolyte systems (approximately 1.6 × 10−4 and 1.0 × 10−3 Scm−1, respectively). The d-Ut(600)-based xerogel with n = 1 displays excellent redox stability.  相似文献   

19.
BaTi0.6Zr0.4O3 (BTZ) ceramic was synthesized by a soft chemical route. X-ray diffraction at room temperature shows that the sample has cubic perovskite structure with space group Pm-3m. Temperature dependent dielectric study of the sample has been investigated in the frequency range from 50 Hz to 1 MHz. The density of the sample was determined using Archimedes’ principle and found to be ∼ 97% of the X-ray density. The average grain size in the pallet was found to be ∼ 1 μm. The dielectric constant peaks at temperature Tm which is dependent on the frequency. The dielectric relaxation rate follows the Vogel–Fulcher relation with activation energy = 0.0185 eV, and freezing temperature = 186 K. All these measurements confirm that BTZ is a relaxor ferroelectric. PACS 77.22.Jp; 77.84.-s; 77.80.Bh; 77.22.Gm  相似文献   

20.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号