首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condensation of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with naphthalen-1-amine and cyclohexane-1,3-dione, methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate, or dimedone gave the corresponding 7-(2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-7,8,9,10,11,12-hexahydro-12H-benzo[c]acridin-8-ones. The reaction of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with naphthalen-1-amine and indan-1,3-dione produced 7-(2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-8H-benzo[h]indeno[1,2-b]quinolin-8-one. 7-(2′-Hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-7,8,9,10,11,12-hexahydrobenzo[b][1,10]phenanthrolin-8-ones were obtained by three-component condensation of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with quinolin-8-amine and cyclohexane-1,3-dione, methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate, or dimedone.  相似文献   

2.
There has been considerable interest in the coordination chemistry of linear and macrocyclic amides(1). Deprotonation of the amide nitrogen is known to occur with various metal ions and the sites of coordination are generally considered to be the carbonyl oxygen prior to deprotonation and the amide nitrogen after deprotonation. However, oxygen binding has generally been inferred from indirect evidence(2,3). We now report the results of some studies on the interaction of copper(II) with a series of 2-carbamoylethyl derivatives of linear diamines, namelyN,N′-bis(2-carbamoylethyl)ethylenediamine (1),N,N,N′,N′-tetrakis(2-carbamoylethyl)ethylenediamine (2)N,N′-bis(2-carbamoylethyl)trimethylenediamine (3) andN,N,N′,N′-tetrakis(2-carbamoylethyl)trimethylenediamine (4) which confirm carbonyl oxygen binding prior to amide deprotonation.  相似文献   

3.
1,3-Benzenediamine,N,N′-bis(4,6-dichloro-1,3,5-triazine-2-yl) and 1,3,5-Triazine,2,2′-[2-methyl-1,3-phenylenebis(oxy)] bis(4,6-dichloro) were synthesized as host molecules. The inclusion compound of 1,3-Benzenediamine,N,N′-bis(4,6-dichloro-1,3,5-triazine-2-yl) crystallizes in the monoclinic crystal system in space group C2/c. The host molecule occupies the space group 2-fold special position and packed in the crystal lattice in such a manner as to leave channels running along the c axis of a rectangular cross-section. It crystallizes with two molecules of acetone that are hydrogen bonded to the amino nitrogen atoms. Molecules of 1,3,5-Triazine,2,2′-[2-methyl-1,3-phenylene bis(oxy)]bis(4,6-dichloro) are packed in the crystal in such a manner as to leave channels of a trapezoid cross-section that are running along the a axis. Guest molecules such as metanol, ethanol, and ethyl acetate can be used to fill the channels. The crystal structures of two inclusion compounds are described.  相似文献   

4.
Euchrenone a2 (7) isolated from the roots ofEuchresta japonica has been synthesised from 3-prenylphloroacetophenone (1) by other workers. We carried out its cyclodehydrogenation with dichloro dicyano quinone (DDQ) to obtain 6-acetyl-5,7-dihydroxy-2,2-dimethylchromene (2) which was ethoxymethylated in the 7-position to give 6-acetyl-7-ethoxymethoxy-5-hydroxychromene (3). Chalcone condensation of3 and 4-ethoxymethoxy-3-C-prenylbenzaldehyde (4) gave 4,6′-bisethoxymethoxy-2′-hydroxy-6″, 6″-dimethyl-3-C-prenylpyrano (2″, 3″–4,3) chalcone (5) which cyclised with methanolic sodium acetate to give protected 5,4′-bisethoxymethoxy-6″, 6″-dimethyl-3′-C-prenylpyrano (2″, 3″–7,8) flavanone (6). Deprotection of6 with 4% methanolic HCl yielded (7) with melting point and spectral data identical to that of the natural compound.  相似文献   

5.
In this work, the title complexes, (EnH2)1.5[ErIII(Ttha)] · 3H2O (I) and (EnH2)[ErIII(Egta)(H2O)]2 · 6H2O (II), where En = ethylenediamine, H6Ttha = triethylenetetramine-N,N,N′,N″,N″’,N″′-hexaacetic acid, H4Egta = ethyleneglycol-bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, have been successfully synthesized. Their structures have been characterized by IR spectroscopy and single-crystal X-ray diffraction techniques. The X-ray diffraction reveals that I is nine-coordinated and crystallizes in the monoclinic crystal space group P2/n with cell dimensions a = 17.6058(16), b = 9.6249(9), c = 20.560(2) ?, β = 109.7440(10)°, and V = 3279.1(5) ?3. Compound II is also nine-coordinated and crystallizes in the monoclinic crystal space group P21/n with the cell dimensions a = 12.938(6), b = 12.651(5), c = 14.943(6) ?, β = 105.441(5)°, and V = 2357.5(17) ?3. In I, each EnH22+ cation connects three adjacent [ErIII(Egta)(H2O)] complex anions through hydrogen bonds, while in I, there are two types of EnH2 2+ anions. One is highly symmetrical, forming hydrogen bonds with two neighboring [ErIII(Ttha)]3− complex anions. The other anion connects three adjacent [ErIII(Ttha)]3− complex anions through hydrogen bonds. These hydrogen bonds lead to the formation of 2D ladder-like layer structure.  相似文献   

6.
Diazonium salts were prepared by diazotization of 4′-amino-, 4′,4″-, and 4′,5″-diaminodibenzo-18-crown-6. Their coupling products with kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone) were synthesized for the first time: 4′-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-, 4′,4″-di-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-, and 4′,5″-di-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-dibenzo-18-crown-6. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 415–416, September–October, 2006.  相似文献   

7.
    
The electron transfer reactions of Mo(CN)8 4, W(CN)8 4− and Fe(CN)6 4− with the manganese (III) complex oftrans-cyclohexane-1,2-diamine-N,N,N′,N′-tetraacetic acid have been studied by stopped-flow spectrophotometry in the pH range 2.0–6.5. Analysis of kinetic data conforms to an outer-sphere process in each case. The validity of Marcus’ crossreaction relation to these reactions is fairly satisfactory.  相似文献   

8.
Two new steroidal glycosides (1 and 2) have been isolated from the ethanolic extract of the stem bark of Mimusops elengi L. and characterized as stigmasta-5,22-dien-3β-ol-3β-D-glucuropyranosyl-(6′β→1″)-D-glucopyranoside (1) and β-sitosterol-3β-(3″′,6″′,7″′-trihydroxynaphthyl-2″′-carboxyl)-4″-glucopyranosyl-(1″→4′)-glucopyranoside (2) along with the known compounds stigmasta-5-en-3β-ol, lup-20(29)-en-3β-ol, and stigmasta-5-en-3β-D-glucopyranoside. Their structures have been elucidated on the basis of spectral data analysis and chemical reactions.  相似文献   

9.
The geometries of N,N′-diphenylbenzene-1,4-diamine (DPPD), N-phenyl-N′-(1-phenylethyl)benzene-1,4-diamine (SPPD), N-(4-methylpentan-2-yl)-N′-phenylbenzene-1,4-diamine (6PPD), N-propan-2-yl-N′-phenylbenzene-1,4-diamine (IPPD), N-(2-methoxybenzyl)-N′-phenylbenzene-1,4-diamine (MBPPD), and N-phenyl-N′-(2-phenylpropan-2-yl)benzene-1,4-diamine (CPPD) as well as of their dehydrogenation products were optimized by the semiempirical AM1 method. The results support the idea of stable NB=CX structures formation during the consecutive dehydrogenation of SPPD, 6PPD, IPPD, and MBPPD antioxidants. The biradicals formed during the second step of dehydrogenation of substituted phenylenediamines might be important for their antioxidant effectiveness. Dedicated to Professor Vladimír Kvasnička, DrSc., in honour of his 65th birthday  相似文献   

10.
When irradiated with UV light, 5-bromo-4-dibromoamino-3-phenylisothiazole is converted into 3,7-diphenylbisisothiazolo[4,5-b:4′,5′-e]pyrazine andN,N′-bis(5-bromo-3-phenylisothiazol-4-yl)diazene. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 957–959, May, 2000.  相似文献   

11.
A new chromone-substituted dihydrotriflavonol, (2S,3S)[6-{(3S) 3″,5″-dihydroxy-6″-methoxydihydrochromone}5,3′,4′,5′-tetrahydroxy-7-methoxy-3-O-8-dihydroflavone]2 3-O-8[6-{(3S) 3″,5″-dihydroxy-6″methoxydihydrochromone}3,5,3′,4′,5′-pentahydroxy-7-methoxydihydroflavonol] was isolated from the leaves of Anogeissus pendula. The structure was determined by UV, 1H NMR, 13C NMR, HMBC, and CD data.  相似文献   

12.
The title complexes, K2[EuIII(dtpa)(H2O)]·5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), Na2[TbIII(Httha)]·6H2O (H6ttha = triethylenetetramine-N,N,N′,N′,N″,N″-hexaacetic acid), were prepared, and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. The crystal of K2[EuIII(dtpa)(H2O)]·5H2O belongs to triclinic crystal system and $ P\bar 1 $ P\bar 1 space group. The crystal data are as follows: a = 8.3540(17), b = 10.147(2), c = 15.059(3) α = 84.63(3)?, β = 82.02(3)°, γ = 83.96(3)°, V = 1253.1(4)?3, Z = 2, R = 0.0325 and wR = 0.1013 for 4407 observed reflections with I ≥ 2σ(I). The [EuIII(dtpa)(H2O)]2− has a nine-coordinate pseudo-monocapped square antiprismatic structure, in which the nine coordinate atoms, three N and six O are from one dtpa ligand and one water molecule. The crystal of the Na2[TbIII(Httha)]·6H2O belongs to monoclinic system and P21/c space group. The crystal data are as follows: a = 10.3976(10), b = 12.7908(13), c = 23.199(2) ? = 90.914(2)°, V = 3084.9(5)?3, Z = 4, R = 0.0309 and wR = 0.0704 for 5429 observed reflections with I ≥ 2σ(I). In the [TbIII(Httha)]2−, the Tb3+ ion is nine-coordinated yielding a pseudo-monocapped square antiprismatic conformation, in which the ttha ligand coordinates to the central Tb3+ ion with four N atoms and five O atoms. There is a free non-coordinate carboxyl group (−CH2COOH) that can be modified by some biological molecules having target function.  相似文献   

13.
A new procedure was developed for the synthesis of 3,7-disubstituted bisisothiazolo[4,5-b:4′,5′-e]pyrazines from 3-substituted 4-dibromoamino-5-haloisothiazoles under UV irradiation.N,N′-Bis(5-haloisothiazol-4-yl)diazenes were obtained as by-products. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1350–1352, July, 1999.  相似文献   

14.
Reactions ofN,N-bis(chloromethyl)amides withN,N′-diacyl derivatives of ethylenediamine (oro-phenylenediamine) result in formation of the corresponding 1,3,5-triacylated perhydro-1,3,5-triazepines (or their benzoanalogs) or 1,3-diacylated imidazolidines (or their benzoanalogs). Reactions ofN,N-bis(chloromethyl)amides withN,N′-ditosylated trimethylenediamine occur in a similar way. The direction of the reactions depends on the type of the acyl substituents and the strength of the bases. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2270–2273, November, 1998.  相似文献   

15.
X-ray diffraction analysis of 4,6-di(morpholin-4-yl) and 4,6-di(2,2,2-trifluoroethoxy) derivatives of 1,3-diphthalimidobenzene, which are potent reagents in the synthesis of heterocyclic polymers, was carried out. The conjugation between the π-systems of the benzene ring and of the phthalimide and morpholine substituents is distorted due to the rotation of the substituents about the C(Ar)−N bonds. The AMI calculations demonstrated that the hydrogen atoms of the methylene groups are “acidic”, which is favorable for condensation reactions. Steric hindrances to intramolecular condensation were estimated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1155–1161, June, 1998.  相似文献   

16.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

17.
Thiocarbamoylation of primary and secondary aliphatic amines with tetramethylthiuram disulfide in various solvents at different temperatures was studied. At 110°C, the reactions with primary amines afforded mixed,N,N-dimethyl-N′-alkyl(cycloalkyl)thioureas and symmetricalN,N′-dialkyl(cycloalkyl)thioureas as the final products, while the reactions with secondary amines gave mixtures of dithiocarbamate salts with “symmetrical” derivatives predominating.  相似文献   

18.
A group of known, but in cellulose chemistry new coupling reagents for homogeneous esterification has been investigated: 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride, N-methyl-2-bromopyridinium iodide, N-methyl-2-chloropyridinium iodide, and N-methyl-2-bromopyridinium tosylate. In order to study their ability to activate carboxylic acids in esterifications of cellulose they have been employed in synthesis of cellulose adamantate esters. Their effectiveness has been estimated in terms of degree of substitution of resulting esters and compared to that obtained with the commonly used N,N′-carbonyldiimidazole.  相似文献   

19.
The reactions of 2-trichloromethylchromones with trimethylenediamine in ethanol at room temperature afford 2-(2-hydroxyaroylmethylene)hexahydropyrimidines. Under analogous conditions, 2-methylchromone gives a mixture ofN,N′-trimethylenebis[3-amino-1-(2′-hydroxyphenyl)-2-buten-1-one] andN,N′-trimethylenebis(imine) of 2-hydroxyacetophenone. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2140–2143, November, 1999.  相似文献   

20.
The title compounds, (NH4)2[MnII(edta)(H2O)]·3H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)2[MnII(cydta)(H2O)]·4H2O (H4cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[MnII(Hdtpa)]·3.5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), were prepared; their compositions and structures were determined by elemental analysis and single-crystal X-ray diffraction technique. In these three complexes, the Mn2+ ions are all seven-coordinated and have a pseudomonocapped trigonal prismatic configuration. All the three complexes crystallize in triclinic system in P-1 space group. Crystal data: (NH4)2[MnII(edta)(H2O)]·3H2O complex, a = 8.774(3) ?, b = 9.007(3) ?, c = 13.483(4) ?, α = 80.095(4)°, β = 80.708(4)°, γ = 68.770(4)°, V = 972.6(5) ?3, Z = 2, D c = 1.541 g/cm3, μ = 0.745 mm−1, R = 0.033 and wR = 0.099 for 3406 observed reflections with I ≥ 2σ(I); (NH4)2[MnII(cydta)(H2O)]·4H2O complex, a = 8.9720(18) ?, b = 9.4380(19) ?, c = 14.931(3) ?, α = 76.99(3)°, β = 83.27(3)°, γ = 75.62(3)°, V = 1190.8(4)?3, Z = 2, D c = 1.426 g/cm3, μ = 0.625 mm−1, R = 0.061 and wR = 0.197 for 3240 observed reflections with I ≥ 2σ(I); K2[MnII(Hdtpa)]·3.5H2O complex, a = 8.672(3) ?, b = 9.059(3) ?, c = 15.074(6) ?, α = 95.813(6)°, β = 96.665(6)°, γ = 99.212(6)°, V = 1152.4(7) ?3, Z = 2, D c = 1.687 g/cm3, μ = 1.006 mm−1, R = 0.037 and wR = 0.090 for 4654 observed reflections with I ≥ 2σ(I). Original Russian Text Copyright ? 2008 by X. F. Wang, J. Gao, J. Wang, Zh. H. Zhang, Y. F. Wang, L. J. Chen, W. Sun, and X. D. Zhang The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 753–759, July–August, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号