首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The China ADS(C-ADS) project proposes to build a 1000 MW Accelerator Driven sub-critical System around 2032. The accelerator will work in CW mode with 10 mA in beam current and 1.5 GeV in final beam energy. The linac is composed of two major sections: the injector section and the main linac section. There are two diferent schemes for the injector section. The Injector-scheme is based on a 325 MHz RFQ and superconducting spoke cavities of the same RF frequency and the Injector-scheme is based on a 162.5 MHz RFQ and superconducting HWR cavities of the same frequency. The main linac design will be diferent for diferent injector choices. The two diferent designs for the main linac have been studied according to the beam characteristics from the diferent injector schemes.  相似文献   

2.
The Rare isotope Accelerator Of Newness(RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project(RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to200-MeV/u-uranium with continuous wave(CW) power of 400 k W to support research in various scientific fields.Its system consists of an ECR ion source, LEBTs with 10 ke V/u, CW RFQ accelerator with 81.25 MHz and 500 ke V/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator(QWR) section with 81.25 MHz and a Half Wave Resonator(HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton,deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 ke V/u to 1.5 MeV/u and currents in the m A range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D~+RFQ design. The D~+RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed.  相似文献   

3.
A 162.5 MHz four-vane radio frequency quadruple(RFQ) accelerator has been developed at the Institute of Modern Physics(IMP) for Injector II of the China ADS linac. The RFQ will operate in continuous wave mode at 100 k W. For the designed 10 mA beam, the additional RF power dissipation will induce a very large reflection of power. A water-temperature controlling system will be used to reduce the power reflection by tuning the frequency of the RFQ. The tuning capability of the water temperature is studied under different configurations of cooling water.Simulations and experiment are compared in this paper. The experimental results agree well with simulation using ANSYS. This can be used as a reference to tune the RFQ in beam commissioning.  相似文献   

4.
We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three-dimensional transient simulations of the accelerating structure along with the input and output couplers have been performed using the software CST-MWS to explicitly demonstrate this feature.  相似文献   

5.
750 keV射频四极注入器束流动力学设计   总被引:1,自引:1,他引:0       下载免费PDF全文
 描述了一台750 keV,201.25 MHz的射频四极注入器束流动力学设计。在考虑与35 MeV质子直线加速器匹配、功耗小、传输效率高等原则的基础上,提出了加速器的技术要求。给出了两套设计方案的主要参数和设计结果。分析了能散度、发射度、Twiss参数、注入流强和能量等参数在非理想匹配条件下对束流传输效率的影响。比较了两套方案的异同点。模拟计算结果表明,两套设计方案均可以满足物理要求,传输效率都在99.3%以上。  相似文献   

6.
在分离作用射频四极场(SFRFQ)加速腔中加入频率调谐装置,用步进电机驱动调谐杆运动,改变调谐板在腔中的位置来改变调谐板与支撑环之间的分布电容,从而改变SFRFQ腔的工作频率,使其谐振频率为26.07 MHz,实现了RFQ和SFRFQ组合加速系统频率的匹配。在完成两腔频率调谐的基础上进行了SFRFQ腔体1/6占空比高功率试验,轫致辐射谱的测量表明,SFRFQ极间电压在入射峰值功率为28.8 kW时已达到86.2 kV,超过了设计指标的70.0 kV。  相似文献   

7.
The Compact Pulsed Hadron Source (CPHS) project is a university-based proton accelerator platform (13 MeV, 16 kW, 50 mA peak current, 0.5 ms pulse width at 50 Hz) for multi-disciplinary neutron and proton applications. The CPHS linac consists of a 3 MeV radio-frequency quadrupole (RFQ) linac and a 13 MeV drift tube linac (DTL). Both the RFQ and DTL share a 325 MHz, 2.1 MW klystron source. A single iris-type radio-frequency (RF) coupler is used to feed 537 kW of RF power to the RFQ cavity. Three-dimensional electromagnetic models of the ridge-loaded tapered waveguide (RLWG) and the coupler-cavity system are presented, and the design process and results of the RLWG and iris plate are described in detail.  相似文献   

8.
文中给出了对一个新型紧凑的电子直线加速器(linac)证明原理的研究结果.在该linac中,通过偏转磁场选择特定能量和相位的大功率速调管用毕束流,然后将它们注入到加速节中,同时使速调管工作在自激振荡状态,使传统linac上的许多部件都可以省去.据此建成的linac的结构简单、维护容易、性能良好、造价经济.因此实现这种具有众多优点的新型linac将有助于linac应用的推广.要实现这样的linac有许多关键的问题需要解决.电子束团的性能参量,如能量、电流、发射度,以及速调管自激振荡的频率稳定度等都必须符合加速的要求.文中给出的计算机模拟和实验结果都表明了实现这种新型的linac的可行性  相似文献   

9.
A 52 MHz Radio Frequency Quadrupole(RFQ)linear accelerator(linac)is designed to serve as an initial structure for the SSC-Linac system(injector into Separated Sector Cyclotron).The designed injection and output energy are 3.5 keV/u and 143 keV/u,respectively.The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell(PIC)code BEAMPATH.Simulation results show that this RFQ structure is characterized by stable values of beam transmission efficiency(at least 95%)for both zerocurrent mode and the space charge dominated regime.The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions,and could easily be accepted by Drift Tube Linac(DTL).The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.  相似文献   

10.
为了提高兰州重离子加速器冷却储存环(HIRFL-CSR)的运行效率、改善加速器输出束流品质,并实现几个加速装置分时供束,提高整个重离子加速装置的利用率,特为(HIRFL-CSR)增建一台新的注入器--CSRLINAC。在108.48 MHz的RFQ之后的CSR-LINAC主加速段,主要由一台108.48 MHz和两台216.96 MHz的IH型漂移管直线加速器组成,用于加速荷质比为1/8.5~1/3之间的重离子,其最大的束流流强为3 mA,并将粒子从0.3 MeV/u加速到3.71 MeV/u。运用KONUS动力学原理,在满足设计指标的情况下,首先利用TraceWin程序进行中能束线MEBT设计,后针对高频腔体设计和束流匹配的基本参数的系列讨论,特别是对CSR-LINAC的中能束流匹配线、参数选择和IH型KONUS结构的漂移管直线加速器进行设计模拟优化。最终得出,在保证腔体设计指标和95.3%的传输效率的情况下,该紧凑型直线加速结构经过三个腔体的加速后,束流的纵向归一化均方根发射度增长仅有25%;同时发现,当流强达到3 mA时,存在空间电荷效应,导致其纵向相宽增长约25%,最大横向包络也存在16.5%的涨落。In order to improve the operation efficiency of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR), a heavy ion linac (linear accelerator) was proposed and designed as a new injector for HIRFL-CSR. Following the 108.48 MHz Radio-Frequency Quadrupole (RFQ), three tanks in total with Interdigital H-mode drift tube linac (IH-DTL) structure are installed to boost the beam energy from 0.3 to 3.71 MeV/u, and the beam current of ions with charge-to-mass ratio from 1/8.5 to 1/3 can reach to 3 mA. The first tank operatesat the same frequency as the RFQ, and the rest two operate at 216.96 MHz. The “Combined Zero-Degree Synchronous Particle Structure” (KONUS) beam dynamics was used in the beam dynamics design. The overview of the physics design on the main accelerating components, including RF design and beam dynamics design are introduced in this paper. The optimized structure design, fabrication status and simulation results are presented in this contribution. It shows that under the condition of assurance of 95.3% transmission efficiency, the normalized rms emittance is about 25%. When the beam current is up to 3 mA, owing to the space charge effect, the increase of longitudinal phase spread and transverse envelope are about 25% and 16.3%, respectively.  相似文献   

11.
作为直线加速器的前级聚焦加速部分,RFQ(射频四极场) 在束流动力学和运行稳定性上都应表现良好,需要保持电场平整和电磁强耦合。为实现这两个目标,提出并研究了窗耦合结构。针对工作频率为81.25 MHz 的1 m长模型腔,利用三维电磁仿真软件CST MWS微波工作室对传统的四翼型、四杆型高频结构进行了仿真,并重点研究了窗耦合型结构。对开窗的对称方式、开窗的个数和大小等进行了分析,发现合适的窗耦合结构能保持较为紧凑的横向尺寸同时能耗适中,同四翼型结构相比二极模频率也远离了运行频率。为验证模拟结果,建造了一个铝模型腔,并对模型腔进行了冷模测试,实测频率为81.41 MHz,相邻模频率差为10.74 MHz,与模拟结果接近。仿真模拟和模型腔测试的结果表明,窗耦合四翼型结构可作为较低频率RFQ的一种设计。As a focusing and acceleration element in front part of the linear accelerator RFQ, should have ahigh performance in both beam dynamic and operation stability. It requires the electro-magnetic field of RFQ to keep uniform and strongly coupled. In this paper the window coupled structure is proposed and investigated to meet the requirements of RFQ design. Different structures have been compared and analyzed, including four-vane type and four-rod type, and the four-vane type with windows. It was concluded that window-coupled structure is more compact in the transverse dimension with modest power loss and the dipole frequency is far from the operation frequency compare to the normal four-vane structure. A one-meter long and frequency of 81.25 MHz model-cavity of alumimum was employed as a sample and simulated by using the microwave studio of CST. The low power RF test results show that the operating frequecy is 81.41 MHz and the nearest mode frequency separation is 10.74 MHz, which is in good agreement with the simulated values. It is concluded that the window-coupled structure is a candidate for low frequency RFQ.  相似文献   

12.
加速器驱动次临界系统注入器Ⅰ,包括ECR离子源、低能传输线、射频四极加速单元、中能传输段和超导腔,注入器Ⅰ出口能够获得能量10 MeV的强流质子束流。为了调束和运行的需要,注入器Ⅰ将安装束流位置测量、束流截面测量、束流流强测量、束流发射度和能量测量,以及束流损失测量等束流参数测量装置。介绍了这些束流测量系统设计及其他方面的一些考虑。  相似文献   

13.
M B Kurup 《Pramana》2002,59(5):811-820
A superconducting linear accelerator (LINAC) to boost the energy of the heavy ion beams from the 14 UD pelletron accelerator at Mumbai is under development. The booster is based on quarter wave resonators (QWR) coated with lead which is superconducting at liquid helium temperature. The operating frequency is 150 MHz. Four resonators each are mounted in a cryostat module built indigenously. A total of seven such modules arranged in two arms with an isochronous and achromatic beam bend in the middle comprises the full LINAC. The transverse focusing of the beam through the LINAC is carried out using periodic quadrupole doublet magnets operating at room temperature. The present status of the project is described.  相似文献   

14.
This work looks at a new type of electron linear accelerator. Compared with the traditional electron linac, it has only two main parts: a klystron and an accelerating tube, without the electron gun element. This new kind of linac could perform just like its predecesors but reduce cost and space. The preliminary design and simulation have been accomplished. In this paper, an overview discussion about the performance tests and some improvements to increase the beam current are presented.  相似文献   

15.
Liu  JianFei  Hou  HongTao  Mao  DongQing  Feng  ZiQiang  Ma  ZhenYu  Luo  Chen  Zhao  ShenJie  Zhao  YuBin  Yu  HaiBo  Yin  Bo  Zhang  ZhiGang  Zheng  Xiang  Li  Zheng 《中国科学:物理学 力学 天文学(英文版)》2011,54(2):169-173
Superconducting cavities have been adopted in many kinds of accelerator facilities such as synchrotron radiation light source, hard X-ray free electron laser linac, colliders and energy recovery linacs (ERL). The 500 MHz superconducting cavities will be a candidate to be installed in the high current accelerators and high current ERLs for their large beam aperture, low higher order modes impedance and high current threshold value. This paper presents great progress in the whole sequence of developing 500 MHz superconducting cavity in China. It describes the first in-house successful development of 500 MHz single cell superconducting cavity including the deep-drawing of niobium half cells, electron beam wielding of cavity, surface preparations and vertical testing. The highest accelerating gradient of the fabricated cavity #SCD-02 higher than 10 MV/m was obtained while the quality factor was better than 4×108 at 4.2 K, which has reached the world level of the same kind of cavities.  相似文献   

16.
This work looks at a new type of electron linear accelerator.Compared with the traditional electron linac,it has only two main parts:a klystron and an accelerating tube,without the electron gun element.This new kind of linac could perform just like its predecesors but reduce cost and space.The preliminary design and simulation have been accomplished.In this paper,an overview discussion about the performance tests and some improvements to increase the beam current are presented.  相似文献   

17.
崔萌  万知之  左向华  刘静  董成龙 《强激光与粒子束》2020,32(10):103015-1-103015-6
传统的医疗及工业用直线加速器系统中一直使用磁控管作为功率源,特别是一些紧凑型加速器系统中,磁控管因为其尺寸与重量的优势成为唯一选择。通过利用多注速调管的低电压、尺寸小、重量轻的特点,研制成功功率量级远超磁控管同时尺寸重量接近的多注速调管,这将会为医疗及工业领域带来新的应用模式与产品类型。为满足医疗及工业辐照用中低能电子直线加速器的需求,近年来已研制出各类型高峰值功率速调管,在癌症治疗、无损检测、工业辐照等方面获得了广泛应用。介绍了一种小型化加速器用X波段多注速调管,其具有工作电压低、效率高、体积小、重量轻等特点,可应用于中低能放疗设备及小型化无损检测整机的加速器系统中。本管研制中重点解决了一体化线包聚焦、集成式冷却等技术,样管尺寸为Φ200 mm×400 mm,重量为25 kg。三支样管测试已可稳定获得峰值输出功率3 MW。  相似文献   

18.
采用欠采样技术为中国散裂中子源(CSNS)直线加速器研制了全数字化束流相位测量电子学系统。介绍了该系统的测量原理、整体设计情况,并进行了实验测试。测试采用324 MHz,100 mVpp的正弦信号,测试结果显示相位分辨率优于0.1°,通道间相位不一致性可控制在±0.2°以内,满足设计指标要求。  相似文献   

19.
中国散裂中子源加速器质子束流加速能量为1.6 GeV,重复频率为25 Hz,撞击固体金属靶产生散射中子,一期工程的打靶束流功率为100 kW。直线加速器的设计束流流强为15 mA,输出能量为81 MeV。射频加速和聚束系统包括一台射频四极场加速器、中能束流传输线的两个聚束器、四节漂移管直线加速器加速腔和直线-环束流传输线的一个散束器,与之相对应,共有8个单元在线运行的射频功率源为其提供所需的射频功率。目前,直线射频功率源系统预研项目已全部完成,各项性能参数均已达到设计指标,当前正处在批产安装调试阶段。151013  相似文献   

20.
对质子加速器中半波长谐振腔(HWR)型的设计进行了研究,完成一种新型HWR超导腔的初步设计。通过对超导腔设计方法及设计原则的研究,结合相关半波长谐振腔的研究现状,充分利用电磁设计软件的功能,对325 MHz低大孔径的半波长谐振腔进行了设计研究。在建模中,针对腔体的不同部位进行比较分析,优化模型形状;在计算中,采用新型有限元网格,使计算快速而结果稳定;在后处理中,使用参数扫描,实现了腔形参数优化;在腔形分析中,计算了二次电子倍增效应,验证了腔体形状的可行性。通过此设计过程,使所设计的新型为0.12的HWR腔具有较好的电磁参数,满足质子加速器的要求,并可应用到实际工程中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号