首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Optimization of gain flattened C-band erbium-doped fiber amplifier (EDFA) using a macrobending method with an improved gain flatness and bandwidth is demonstrated. The optimization for gain flatness and bandwidth was achieved by varying the bending radius and the length of the doped fiber. In the optimized condition, the gain saturation effect as well as the energy transfer from shorter wavelengths to longer wavelengths resulted in a flattened and broadened gain profile in the C-band region. The amplifier was optimized to a 9 m long erbium-doped fiber (EDF) with erbium ion concentration of 1100 ppm and bending radius of 6.5 mm. The gain variation of the EDFA is obtained within ±1 dB over 25 nm bandwidth of C-band region.  相似文献   

2.
We have developed a tunable multi-wavelength semiconductor fiber laser (SFL) for chromatic dispersion measurements of optical fiber based on the time-of flight (TOF) or pulse-delay technique. The SFL incorporates a programmable high-birefringence fiber Sagnac loop to select the separation of the lasing wavelengths between 3.2 and 1.6 nm. The SFL emits 5 and 11 wavelengths for separations of 3.2 and 1.6 nm, respectively, all within the C-band and with an output power uniformity within 3.2 dB. Results from TOF measurements are compared with standard phase-shift techniques; the percent differences between the two methods are within ±1.34% for measurements on various lengths of standard single mode fiber.  相似文献   

3.
We propose optical fibre based filters employing dual-core resonant leaky structure for gain equalization of erbium doped fibre amplifier (EDFA). Spectral loss variation of the structure has been utilized to suppress gain peak and, thus, flatten overall gain profile in the C-band. We show 15.7 dB flat gain with ± 1.6 dB ripple in the wavelength range from 1525 nm to 1555 nm using a single filter and 18±0.7 dB gain using two cascaded filters.  相似文献   

4.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

5.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

6.
By using an optical circulator and C/L-band wavelength division multiplexer to recycle the C-band backward ASE, an L-band gain-clamped erbium-doped fiber amplifier is presented. We have experimentally studied the static gain clamping property of this amplifier. As the ASE feedback attenuation is set to 0, the gain at 1585 nm can be clamped at 18.84 ± 0.26 dB within dynamic range of 25 dB and the critical power reaches about −15.09 dBm. The gain variation and saturated output power at 1585 nm for 0 dB attenuation are 1 dB lower and 2.17 dB higher than those for 30 dB attenuation, which indicates that the L-band EDFA gain can be effectively clamped via the ASE injection technique.  相似文献   

7.
We present the results of an investigation of optical gain and noise figure for simultaneous multi-channel amplification of an erbium doped fibre amplifier (EDFA) under optimized pump condition. Different pump configurations with varying input signal levels show interesting features on gain flatness. In the experiment, population inversion along the fibre length which determines the gain-spectra and noise characteristics of the amplifier is adjusted through optimized fibre length and injected pump power in order to minimize the gain-tilt at C-band. It is observed that bi-directional pumping manifests the best combination of low noise and high gain of EDFA which are useful as in-line repeaters in WDM network. We obtain 30 ± 1.5 dB intrinsically flat small signal gain from 1538 nm to 1558 nm band of wavelength with noise figure <4 dB for 16-channel simultaneous amplification in a single stage EDFA without gain flattening filter.  相似文献   

8.
Erbium doped fiber EDF has been irradiated by a neutron dose up to 200 krad. The Gain of the C-band EDFA has been investigated at different distances from Am-241/Be-9 neutron source. An analytically model based on the classical equation of propagation was developed to perform an accurate prediction of the effects of the radiation on the erbium doped fiber amplifier, EDFA. The EDFA was exposed to a neutron beam emitted from the source for 24 hours at each distance. The gain of EDF deteriorates after being irradiated by a neutron dose. The gain of irradiated EDFA comes down to 14 dB at radiation dose of 200 Gy. The results obtained by the present model and the measured ones are in good agreement.  相似文献   

9.
This paper proposes a novel bi-directional hybrid fiber amplifier using a single-wavelength pump laser diode (LD) at 1495 nm. The hybrid amplifier is theoretically applied in a 50 km bi-directional local area network (LAN) with 26 ch × 10 Gb/s for bi-directional transmission. Thirteen C-band channels serve as downlink signals while the other 13 L-band channels are employed as uplink signals. Without loss of generality, four channels (two from each band) are experimentally analyzed. Erbium doped fiber (EDF) provides amplification for the C-band channels and Raman amplification amplifies the L-band channels. The pump efficiency is improved by employing a double-pass scheme for both the Erbium doped fiber amplifier (EDFA) and Raman fiber amplifier (RFA). The chromatic dispersion incurred by all the channels is precisely compensated for by inserting a fiber Bragg grating (FBG) array in appropriate locations along the dispersion compensating fiber (DCF) segments. Moreover, gain equalization of all the channels is achieved by adjusting the FBG reflectivity. Both the simulation results and experimental measurements confirm the proposed device feasibility and potential application in a bi-directional LAN.  相似文献   

10.
Based on dual-order stimulated Raman scattering (SRS) of a single 1395 nm Raman fiber laser in 75 km single mode fiber and its corresponding dispersion compensation module, a hybrid Raman/Erbium doped fiber amplifier (EDFA) for long wavelength band (L-band) amplification is realized by inserting a segment of EDF within the span. By comparing the performance of gain and noise in four hybrid amplifiers with different span configurations, we find that the distribution of the secondary L-band amplification obtained from the EDF along the link has a great influence on the performance of the hybrid amplifier. Both gain and noise performance of hybrid amplifier can be improved significantly by optimizing the location of the EDF. Moreover, we can extend the flat gain bandwidth from L-band to central wavelength band (C-band) plus L-band by recycling the residual first-order SRS to pump a segment of EDF with proper length.  相似文献   

11.
A hybrid L-band erbium-doped fibre amplifier (EDFA) with enhanced gain characteristic is demonstrated without a significant noise figure penalty. It uses a backward C-band amplified stimulated emission from both the ends of a bismuth-based EDFA system to pump an unpumped erbium-doped fibre (EDF) for gain enhancing. The maximum gain enhancement of 4.0dB is obtained at wavelength 1604nm with EDF length of 20m. The gain spectrum is reasonably fiat in this amplifier compared with the amplifier without an EDF. The gain varies from 27.4 dB to 30.2 dB at wavelength region 1564-1608 nm with incorporation of 20 m EDF. Noise figure also varies from 6.0 to 7.TdB at this wavelength region.  相似文献   

12.
A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.  相似文献   

13.
The L-band erbium-doped fiber amplifier (EDFA) of low noise figure and high clamped-gain using gain-clamped and double-pass configuration is presented in this paper. A total of five different configurations of EDFAs by reflection scheme with single forward pumping schemes are examined and compared here. Among these configurations, we first find the configuration of 1480-nm pumped L-band EDFA with optimum gain and noise figure value. To further minimize the gain variation, a fiber Bragg grating (FBG) with 1615-nm center wavelength and 1-nm bandwidth is determined and added in double-pass L-band EDFA. The gain variation and maximum noise figure of EDFA while channel dropping is investigated. As the number of channel dropping from 32 to 4, the L-band type-A EDFA keep the variation of gain within 2.9 dB and the maximum noise figure below 5 dB with each channel’s input power of −23 dBm.  相似文献   

14.
A stable and low costless tunable erbium doped fiber ring laser using fiber Bragg grating-assisted add-drop filter is proposed and demonstrated. A stable laser output is obtained with a 4 nm tuning range. The power fluctuation, full-width at half maximum and SMSR are measured to be less than 0.50 dB, smaller than 0.015 nm and better than 55 dB in this tuning range.  相似文献   

15.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

16.
Effect of injection of C-band ASE on L-band erbium-doped fiber amplifier   总被引:3,自引:0,他引:3  
The effect of injecting conventional band (C-band) amplified spontaneous emission on the performance of long-wavelength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated. It uses a circulator and broadband fiber Bragg grating (FBG) to route C-band ASE from a C-band EDFA. Injection of a small amount of ASE (attenuation of 20 dB or above) improves the small signal gain with a negligible noise figure penalty compared to that of an amplifier without the ASE injection. A maximum gain improvement of 3.5 dB is obtained at an attenuation of 20 dB. At very large amounts of ASE injection (attenuation of 0 dB), the gain of the amplifier is clamped at 15.2 dB from ?40 to ?10 dBm with a gain variation of less than 0.3 dB. The saturation power is also increased from ?8 dBm (for without ASE injection) to 2 dBm (VOA=0 dB) with a slight noise figure penalty. These results show that the ASE injection technique can be used either for gain improvement or for gain clamping in L-band EDFA.  相似文献   

17.
A double-cladding microstructured fiber (MF) is proposed in this paper. The inner cladding of this optical fiber is composed of elliptical air holes and silica. The dependence of dispersion on the diameter of the air holes, the pitch, and the axes of the elliptical holes is investigated numerically. The proposed fiber possesses an ultra flattened dispersion curve over a wide wavelength range, and its dispersion value is small. The effective mode area is approaching to 60 μm2, and the confinement loss is as low as <0.025 dB/km at 1550 nm. While choosing suitable structure parameters, an ultra dispersion-flattened MF within a broadband from1000 nm to 1900 nm can be achieved. The dispersion fluctuation is 0.6-1.0 ps/(nm·km) in all S, C and L band.  相似文献   

18.
低噪声、高增益的L -band EDFA的实验研究   总被引:3,自引:3,他引:0  
秦山  强则煊  何赛灵 《光子学报》2005,34(3):409-411
针对传统的L-band EDFA的工作效率低,提出了一种基于单根光纤光栅、泵浦分配、两段级联的EDFA的新结构,其中的光纤光栅用来反射无用的后向C-band ASE.系统地研究了泵浦比例和光纤光栅波长对增益噪声指数的影响关系.最后经实验验证,得到了低噪声、高增益的L-band的EDFA.其在输入信号光(1570 nm)功率为-30 dBm及泵浦功率为70 mW时,增益为22.26 dB,增益噪声指数为4.96 dB.  相似文献   

19.
Na Dou 《Optics Communications》2008,281(8):2238-2242
In this paper, we study on optical bistability behaviors in a double-coupler ring resonator, in which an erbium-doped fiber amplifier (EDFA) is inserted into the ring for counteracting the loss by the gain of EDFA. The two groups of transmitted and reflected optical bistability loops under different parameters are investigated symmetrically. According to our optimum design of this new optical bistable device, the switching power can be less than 60 mW.  相似文献   

20.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号