首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fluorescence spectrum of ethanol molecules induced by femtosecond laser pulses has been recorded as the fingerprint of the molecules. It was demonstrated that, if this is combined with a LIDAR technique, the fluorescence from pollutants in the atmosphere could be detected over a long distance. PACS 42.68.Wt; 42.62.Fi; 42.65.Re  相似文献   

2.
Yu X  Peng J  Sun R  Yi Y  Yang P  Yang X  Wang C  Zhao Y  Chen D 《Optics letters》2011,36(10):1930-1932
We first research the effects of femtosecond-laser-induced plasma (FLIP) on a laminar premixed methane/oxygen/nitrogen flame speed with a wide range of equivalence ratios (0.8-2.0) at atmospheric pressure. It is experimentally found that the flame speed increases by 30.8% at equivalence ratio 1.33, and the effects of the FLIP on the flame speed are more remarkable when the methane is rich. The self-emission spectra from the flame and the plasma are studied, and the presence of the oxygen atom is likely to be a key factor in enhancing flame speed.  相似文献   

3.
Remote sensing of the atmosphere using ultrashort laser pulses   总被引:2,自引:0,他引:2  
Theoretical and experimental studies were performed on the propagation of ultrashort optical terawatt pulses through the atmosphere. Propagation simulations of intense sub-picosecond pulses show that non-linear processes, such as white light generation, can be initiated at a chosen distance by selecting an appropriate group velocity dispersion. With this technique, a white light continuum was generated in the atmosphere whose spectral distribution was characterised in the visible and near infra-red. Applications of this novel light source for atmospheric remote sensing were investigated, combining lidar and time-resolved broadband absorption spectroscopy techniques. Measurements were performed on the oxygen molecule and water vapour. A comparison between the experimental results and the tabulated spectroscopic data led to an excellent correlation with measurements made on water vapour whereas observations on the oxygen showed discrepancy. This study demonstrates that the remote generation of a white light source represents a new way to access the range-resolved multi-trace gas analysis in the atmosphere. Received: 8 December 1999 / Revised version: 18 May 2000 / Published online: 16 August 2000  相似文献   

4.
Mid-infrared radiation at 3.43 μm is generated by difference frequency mixing a 1.064 μm Nd:YAG laser with a methane gas Raman shifted Nd:YAG (1.064 μm) laser at 1.54 μm in KTiOAsO4 (KTA). Using this pulsed (7 ns), moderate energy (1 mJ) source we demonstrate the optical detection of methane in air and measure an absorption coefficient of 1.2 cm−1atm−1. Additional source characteristics include an intrinsic wavelength stability defined by the methane Raman vibrational frequency and a moderate linewidth (1.5 cm−1).  相似文献   

5.
6.
Caries – the most frequent cause for dental surgery – still is mainly treated with conventional mechanical drills, although lasers have meanwhile been successfully applied to various clinical disciplines. Since ultrashort laser pulses with sufficient pulse energies have only been available at low repetition rates (< 1 kHz) in recent decades, solely continuous wave radiation or pulse durations longer than thermal diffusion processes were applied with the result of severe thermal damage and pain. In this report we present results on dental tissue ablation obtained with a novel thin disk Yb:KYW regenerative amplifier system that does not require chirped pulse amplification (CPA). We show that femtosecond laser pulses provide us with todays optimal tool to treat dental decay in an acceptable time, in an excellent quality, and with unsurpassed caries selectivity. The superior quality is a result of the non-thermal laser-tooth interaction. All our results are based on environmental scanning electron microscopy. PACS 42.62.–b; 06.60.Jn; 82.80.–d  相似文献   

7.
We demonstrate the control of neutral fragmentation of methane(CH4) induced by a Ti:sapphire intense laser pulse(800 nm, 40 fs) by using a pump–probe spectroscopy. Enhancement of the fluorescence emission from the neutral radical CH(A2Δ → X2Π) induced by the intense laser field(~1014 W/cm2) is observed when the wavelength of the probe laser pulse is tuned to 400 nm. The phenomena are explained based on excitation enhancement of the super-excited state of the parent molecule resulting in an increase in neutral dissociation of the methane molecules.  相似文献   

8.
We demonstrate experimentally the first range-resolved detection and identification of biological aerosols in the air by non-linear lidar. Ultra-short terawatt laser pulses are used to induce two-photon-excited fluorescence (2PEF) in riboflavin-containing particles at a remote location. We show that, in the case of amino acid detection, 2PEF-lidar should be more efficient than linear 1PEF-lidar beyond a typical distance of 2 km, because it takes advantage of the higher atmospheric transmission at the excitation wavelengths. 2PEF-lidar moreover allows size measurement by pump–probe schemes, and pulse shaping may improve the detection selectivity. PACS 33.50.-j; 33.80.Wz; 42.65.-k; 42.68.Wt; 92.60.Mt  相似文献   

9.
为验证光学加工碳纤维材料的可行性,利用飞秒激光和连续激光对碳纤维块体材料进行了加工。获得了利用飞秒和连续激光加工的表面形貌。与连续激光加工相比,利用脉宽40 fs的激光加工效率较高,加工区边缘形貌较好,加工质量较高。通过不同激光功率下加工孔径尺寸的研究获得了飞秒激光加工阈值在1012 W/cm2量级。研究结果证明了光学加工碳纤维体材料的可行性。  相似文献   

10.
We studied the ionization and dissociation of polyatomic molecule methane in an intense femtosecond laserfield with wavelength of 810 nm and intensities ranging from 1.4×10~(14)to 2.6×10~(15) W/cm~2 by massspeetroscopy.Abundant fragment inos were observed in addition to the strong parent ion.The effect offrequency chirp was investigated and it was found that the negatively chirped pulses dramatically enhancedthe dissociation probability,which might be used to control the dissociation pathways.  相似文献   

11.
Matrix assisted laser desorption/ionization (MALDI) measurements with femtosecond laser pulses at a central wavelength of 400 are presented. The examined analyte is potassium adapted angiotensine II whereby the matrix is a combination of sinapic acid and α-cyano-4-hydroxycinamic acid. Pulse energy dependent measurements are performed in order to investigate the MALDI processes for the obtained potassium adapted angiotensine II complexes. The results show the higher stabilization tendency of the potassium adapted angiotensine II which could be used to bring very fragile non-stable macromolecules into the gas phase. The outlined approach is an attempt to explain the underlying MALDI process by focusing on the mass spectra of potassium adapted angiotensine II.  相似文献   

12.
飞秒激光热反射系统测量金属薄膜中的热波   总被引:1,自引:0,他引:1       下载免费PDF全文
王海东  马维刚  张兴  王玮 《物理学报》2010,59(6):3856-3862
金属材料中的热波现象可以利用包含电子弛豫时间影响的双曲两步模型进行理论分析.通过飞秒激光热反射实验系统对金属薄膜材料进行了测量.利用偏振分光棱镜将飞秒激光分成抽运光和探测光,其中较强的抽运光用于加热金属薄膜而较弱的探测光用于探测薄膜表面反射率随时间的变化,两束光之间的光程差通过步进电机进行精确控制.利用金属薄膜反射率和电子温度的正比例关系就可以得到电子温度随时间的变化规律.实验发现在加热激光脉冲过后的电子温度下降区间会出现另一个较弱的电子温度波峰,并利用相同厚度的两块金属薄膜样品重复测量对实验结果进行了验证.理论上这一现象可以解释为金属薄膜中热波在背面反射的结果,并且实验结果和双曲两步模型给出的热波理论计算结果相符合.根据实验结果计算出热波传递速度约为5×105m/s,对应的电子弛豫时间为60fs.  相似文献   

13.
This study is the first to demonstrate the selectivity quantum well intermixing process by using a femtosecond laser scanning-induced disordering technique. The advantages of the femtosecond laser are photochemical machining and the two-photon absorption mechanism. The femtosecond laser system can convert writing into the scan to create a nanostructure by adjusting the lens. The effect of power on the band gap shift during laser scanning was investigated. The band gap shift was small and unstable without the heating substrate. A wavelength shift higher than 77.3 nm for the InGaAsP MQW material was obtained at elevated temperatures.  相似文献   

14.
We present a novel method to fabricate hole arrays by forming a four-beam interference pattern with two gratings. In this method a femtosecond laser beam is split into four and collected to interfere using two cascaded diffractive gratings. One benefit of this grating pair is that it is achromatic, because of the geometry of the grating pair, and therefore it is suitable for femtosecond ablation. Grating pairs were designed and fabricated for a standard Ti:sapphire femtosecond laser, with 800-nm central wavelength, so that the interference pattern generates holes with less than 1-μm diameter. Holes with this size diffract with a colorful visual appearance in the visible wavelength range and therefore these structures are suitable for security, authentication and decorative marking. We show that this method is suitable for fast ablation of hole arrays in both silicon and steel.  相似文献   

15.
The combination of remote sensing methods like Doppler lidar and FTIR offers the possibility to determine mass fluxes of gases remotely. Doppler lidar measures the three-dimensional wind vector in the vicinity of diffuse sources or the velocity of air in a chimney plume if an industrial complex is monitored. FTIR is a multi-component remote sensing method for gas concentrations. The Fourier transformation of an interferogram of a Michelson interferometer within a FTIR system converts the recorded intensity (function of optical path length) to a spectral signal (function of wavenumber). Both information, velocity and concentration, give the mass fluxes of the tracer (gas). A first test was performed at Munich-North power station with FTIR and cw-Doppler lidar. Fluxes of CO2, CO, NO, and HC1 were determined. The results are in good agreement with the fluxes measured by in-situ instruments of the power station. The method can be used to control industrial complexes from an outside observation site.  相似文献   

16.
Micron-resolution microelectrodes and microelectrode arrays are commonly used in Lab-on-a-chip applications, typically for particle and fluidic sensing or pumping applications. The common method of fabricating such structures is to use conventional photolithography, which involves several steps, any of which can affect the quality and dimension of the final structure. Here we present an alternative method of creating microelectrodes using direct laser patterning. This is a significantly simpler and faster fabrication route requiring a single patterning step, and which also allows design changes to be implemented quickly, without having to re-manufacture a photolithographic mask. To confirm the suitability of this approach to fabricating microelectrodes, a complex multielectrode array design for neuron stimulation was directly laser-patterned.  相似文献   

17.
飞秒激光双光子微细加工技术及研究现状   总被引:4,自引:0,他引:4  
飞秒激光双光子微细加工技术以其特有的高精度三维微加工优势,成为微型机械加工领域新的发展方向之一。介绍了飞秒激光双光子微细加工技术的原理和应用的现状。结合目前已有的微细加工技术,对双光子微细加工技术的特点加以评述。简要报道了利用飞秒激光双光子微细加工技术的一些研究进展。探讨了飞秒激光双光子微细加工技术今后的发展方向及其存在的基本问题。  相似文献   

18.
In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1–0.5 mJ and 0.1–5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.  相似文献   

19.
We report on the synthesis of nanocrystalline zirconia in liquid using femtosecond laser ablation. Nanocrystalline cubic zirconia has been prepared by femtosecond laser ablation of zirconium in ammonia, while nanocrystalline tetragonal and monoclinic zirconia was synthesized in water. The physical and chemical mechanisms of the formation of nanocrystalline metastable zirconia are discussed. The intrinsic properties of femtosecond laser ablation in liquid and OH−1 may be responsible for the synthesis of cubic zirconia. It is suggested that the femtosecond laser pulse can create higher temperature and pressure conditions at a localized area in the liquid than the nanosecond laser pulse and the cooling is also faster in the femtosecond laser ablation process, which determined the difference between the products synthesized with femtosecond and nanosecond-pulsed laser ablation.  相似文献   

20.
Phase control of Fe–Si amorphous thin film in micro area is demonstrated using femtosecond laser irradiation. A femtosecond laser beam with a high repetition rate over 200 kHz and tightly focused through an objective lens promotes both crystallization and phase transformation from an amorphous phase into crystalline β-FeSi2, α-FeSi2, or ε-FeSi phases. Formation of each crystalline phase is possible by changing the pulse energy or the scanning speed of the incident laser beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号