首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown experimentally and confirmed by means of full dimensional (3D + 1) numerical simulations, the possibility to create an array of refractive index modification zones inside a fused silica sample using a 43 fs, 2 mJ, 800 nm laser pulse and a periodic mesh introduced in front of the sample. Robust filaments and the corresponding refractive index modification zones preserve their transverse positions for more than 10 Rayleigh lengths (∼500 μm). Numerical simulations prove that each mesh unit is an independent source of the background energy for a filament formed within this unit. The effect of the simultaneous formation of many extended periodically spaced filaments can be used to accelerate the fabrication of microoptics devices.  相似文献   

2.
Self-compression of multi-millijoule femtosecond laser pulses and dramatic increase of the peak intensity are found in pressurized helium and neon within a range of intensity in which the ionization modification of the material parameters by the pulse is negligible. The pulse propagation is studied by the (3 + 1)-dimensional nonlinear Schrödinger equation including basic lowest order optical processes - diffraction, second order of dispersion, and third order of nonlinearity. Smooth and well controllable pulse propagation dynamics is found. Construction of compressed pulses of controllable parameters at given space target point by a proper chose of the pulse energy and/or gas pressure is predicted.  相似文献   

3.
Two-dimensional ‘hat-scratch’ structures are fabricated on silica glass by the interference of three non-coplanar beams originating from a single femtosecond laser pulse. The scanning electron microscope (SEM) characterizations show that the as-formed structures are composed of hat holes and scratch marks. The experimental results indicate that the structures are dependent on the intensity of laser beam. The formation of the two-dimensional ‘hat-scratch’ structures is mainly due to the combined laser ablation effects including ionization, shock wave, plasma expansion, and phase explosion.  相似文献   

4.
Ti:sapphire femtosecond laser pulse filamentation in competition with optical breakdown in condensed matter is studied both experimentally and numerically using water as an example. Strong random deflection and modulation of the supercontinuum under tight focusing conditions were observed. They manifest the beginning of the filamentation process near the highly disordered plasma created by optical breakdown at the geometrical focus. Received: 13 June 2002 / Revised version: 16 August 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-418/656-2623, E-mail: wliu@phy.ulaval.ca  相似文献   

5.
We report an experiment to demonstrate the crucial effect of the so-called background reservoir during the propagation of femtosecond laser pulses in air. The background reservoir was blocked by allowing only the filament to pass through a pinhole generated by the filament itself in an aluminum foil. We observed that the filamentation process is terminated immediately after the pinhole. Consequently, to achieve long-range filamentation, it is necessary to maintain the dynamic energy exchange between the reservoir and the self-foci.  相似文献   

6.
We report the first observation of the attachment of two single plasma filaments created collinearly in the atmosphere by IR femtosecond laser pulses. The linked filamentary structure is electrically conductive and emits sub-THz radiation over its entire length. Concatenation is achieved only for a specific time ordering between the two initial laser pulses. The pulse producing the filament closer to the laser source must be retarded with respect to the other pulse. This special time ordering is attributed to the acceleration of light in a self-guided pulse. Received: 4 March 2003 / Published online: 14 May 2003 RID="*" ID="*"Corresponding author. Fax: +33-1/6931-9996, E-mail: stzortz@ensta.fr  相似文献   

7.
We present results of measurements of fluorescence spectra due to the interaction of a Ti:sapphire laser pulse with N2 molecules at different gas pressures and pulse energies. The analysis of the data together with the results of numerical simulations, using a propagation model, reveal signatures of the phenomena of intensity clamping and of re-focusing of the laser pulse at high gas pressure. The laser pulse energy for intensity clamping as a function of the gas pressure is determined. Received: 21 May 2001 / Revised version: 10 July 2001 / Published online: 19 September 2001  相似文献   

8.
Femtosecond laser filamentation is particularly interesting for remote sensing pollutant in the atmosphere. In this work, we investigate the local shot-to-shot stability of the filament induced fluorescence of nitrogen in air. It is found that the root-mean square fluctuation of the fluorescence signal is at least one order of magnitude lower than that of the linear propagation case. In practice, it would contribute to improve the robustness of long distance spectroscopic analysis of the fluorescence of pollutant molecules inside the filament. We further point out that this unique property of filament induced fluorescence spectroscopy is because of the intensity clamping, a profound phenomenon of filamentation.  相似文献   

9.
Deep drilling of metals by femtosecond laser pulses   总被引:3,自引:0,他引:3  
Results of recent investigations on deep drilling of metals by femtosecond laser pulses are reported. At high laser fluences, well above the ablation threshold, femtosecond lasers can drill deep, high-quality holes in metals without any post-processing or special gas environment. It is shown that for high-quality drilling of metals, the following processes are important: (1) laser-induced optical breakdown of air containing metal vapor and small metal particles (debris) generated by multi-pulse femtosecond laser ablation, (2) transformation of laser pulses into light filaments, and (3) low-fluence finishing. Received: 15 November 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +49-511/2788-100, E-mail: ch@lzh.de  相似文献   

10.
Millimeter-long filaments and accompanying luminous plasma and defect channels created in fused silica (FS) by single focused femtosecond laser pulses with supercritical powers were probed in situ using optical imaging and contact ultrasonic techniques. Above the threshold pulse energy Eopt = 5 μJ corresponding to a few megawatt power levels pulses collapse due to self-focusing, producing channels filled by electron-hole plasma and luminescent defects, and exhibits predominantly compressive pressure transients. Analysis of the optical and ultrasonic response versus the laser pulse energy suggests that filamentary pulse propagation in the channels occurs with considerable dissipation of about ∼10 cm−1. The predominant ionization mechanism is most likely associated with avalanche ionization, while the main mechanism of optical absorption is free-carrier absorption via inverse Bremsstrahlung interaction with the polar lattice.  相似文献   

11.
Atomic-scale structural changes have been observed in the glass network of fused silica after modification by tightly focused 800-nm, 130-fs laser pulses at fluences between 5 and 200 J cm-2. Raman spectroscopy of the modified glass shows an increase in the 490 and 605-cm-1 peaks, indicating an increase in the number of 4- and 3-membered ring structures in the silica network. These results provide evidence that densification of the glass occurs after exposure to fs pulses. Fluorescence spectroscopy of the modified glass shows a broad fluorescence band at 630 nm, indicating the formation of non-bridging oxygen hole centers (NBOHC) by fs pulses. Waveguides that support the fundamental mode at 633 nm have been fabricated inside fused silica by scanning the glass along the fs laser beam axis. The index changes are estimated to be approximately 0.07×10-3. Received: 17 December 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-925/423-2463, E-mail: dmkrol@ucdavis.edu  相似文献   

12.
We have studied the plasma formation and ablation dynamics in fused silica upon irradiation with a single 120 fs laser pulse at 800 nm by using fs-resolved pump-probe microscope. It allows recording images of the laser-excited surface at different time delays after the arrival of the pump pulse. This way, we can extract both the temporal evolution of the surface reflectivity and transmission, at 400 nm, for different spatial positions in the spots (and thus for different local fluences) from single series of images. At fluences well above the visible ablation threshold, a fast and large increase of the reflectivity is induced by the formation of a dense free-electron plasma. The maximum reflectivity value is reached within ≈1.5 ps, while the normalized transmission decreases within ≈400 fs. The subsequent temporal evolution of both transient reflectivity and transmission are consistent with the occurrence of surface ablation. In addition, the time-resolved images reveal the existence of a free-electron plasma distribution surrounding the visible ablation crater and thus formed at local fluences below the ablation threshold. The lifetime of this sub-ablation plasma is ≈50 ps, and its maximum electron density amounts to 5.5×1022 cm−3.  相似文献   

13.
Detailed investigations of the possibilities for using femtosecond lasers for the nanostructuring of metal layers and transparent materials are reported. The aim is to develop a simple laser-based technology for fabricating two- and three-dimensional nanostructures with structure sizes on the order of several hundred nanometers. This is required for many applications in photonics, for the fabrication of photonic crystals and microoptical devices, for data storage, displays, etc. Measurements of thermionic electron emission from metal targets, which provide valuable information on the dynamics of femtosecond laser ablation, are discussed. Sub-wavelength microstructuring of metals is performed and the minimum structure size that can be fabricated in transparent materials is identified. Two-photon polymerization of hybrid polymers is demonstrated as a promising femtosecond laser-based nanofabrication technology. Received: 20 November 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +49-511/2788-100, E-mail: ch@lzh.de  相似文献   

14.
In this paper, the interaction of femtosecond laser pulses with droplets microplasma at the intensity of 1016 W/cm2 is theoretically studied. Laser absorption, suprathermal electron generation, and second harmonic generation are discussed. Using an analytical model and a 2D particle-in-cell code, we find that the dominated mechanism is resonant absorption in the interaction of femtosecond laser pulses with droplets for the misrospherical geometry.  相似文献   

15.
Supercontinuum generation by femtosecond filaments in air is investigated for different laser wavelengths ranging from ultraviolet to infrared. Particular attention is paid on the role of third-harmonic generation and temporal steepening effects, which enlarge the blue part of the spectrum. A unidirectional pulse propagation model and nonlinear evolution equations are numerically integrated and their results are compared. Apart from the choice of the central wavelength, we emphasize the importance of the clamped intensity reached by self-guided pulses, together with their temporal duration and propagation length as key players acting on both supercontinuum generation of the pump wave and emergence of the third harmonic. Maximal broadening is observed for large wavelengths and long filamentation ranges.  相似文献   

16.
The competition between femtosecond laser pulse induced optical breakdown and femtosecond laser pulse filamentation in condensed matter is studied both experimentally and numerically using water as an example. The coexistence of filamentation and breakdown is observed under tight focusing conditions. The development of the filamentation process from the creation of a single filament to the formation of many filaments at higher pulse energy is characterized systematically. In addition, strong deflection and modulation of the supercontinuum is observed. They manifest themselves at the beginning of the filamentation process, near the highly disordered plasma created by optical breakdown at the geometrical focus. Received: 9 July 2002 / Revised version: 15 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +1-418/6562-623, E-mail: wliu@phy.ulaval.ca  相似文献   

17.
Received: 28 February 1997 / Revised version: 2 May 1997  相似文献   

18.
We present a new method to measure the length of a filament induced by the propagation of intense femtosecond laser pulses in air. We used an antenna to detect electromagnetic pulses radiated from multipole moments inside the filament oscillating at the plasma frequency. The results are compared with the values detected from the backscattered fluorescence induced by multiphoton ionization of nitrogen molecules excited inside the filament. The values are found to be in good agreement. Received: 6 November 2002 / Revised version: 27 January 2003 / Published online: 24 April 2003 RID="*" ID="*"Corresponding author. Fax: +1-418/656-2623, E-mail: shosseini@phy.ulaval.ca  相似文献   

19.
We experimentally demonstrate that high-power femtosecond pulses can be compressed during the nonlinear propagation in the normally dispersive solid bulk medium. The self-compression behavior was detailedly investigated under a variety of experimental conditions, and the temporal and spectral characteristics of resulted pulses were found to be significantly affected by the input pulse intensity, with higher intensity corresponding to shorter compressed pulses. By passing through a piece of BK7 glass, a self-compression from 50 to 20 fs was achieved, with a compression factor of about 2.5. However, the output pulse was observed to be split into two peaks when the input intensity is high enough to generate supercontinuum and conical emission.  相似文献   

20.
The time-resolved dynamics of plasma self-channeling and refractive index bulk modification in silica glasses were first observed in situ using a high-intensity femtosecond (110 fs) Ti:sapphire laser (λp=790 nm). Plasma channeling is induced in silica glass at an irradiation higher than an input intensity of 1.5×1012 W/cm2 and photoinduces either the refractive-index modification or optical crack modification. In the domain of refractive-index modification, the lifetime of induced plasma self-channeling was 20 ps and the structural transition time for forming the refractive-index change was 10 ps. In the domain of optical cracks, however, the lifetime of induced plasma formation was 30 ps and the structural transition time for forming the optical cracks was 40 ps. According to electron spin resonance spectroscopic (ESP) measurement, it was found that the defect concentration of the SiE center increased significantly in the refractive index modification region. A maximum value of the refractive-index change Δn was measured to be 1.6×10-2. The intensity profile of the output beam transmitted through the refractive-index modification showed that the bulk modification produced a permanent optical waveguide. Received: 8 April 2002 / Accepted: 12 April 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +81-48/462-4682, E-mail: shcho@riken.go.jp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号