首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a complete dynamic model of semiconductor optical amplifiers (SOAs) including the inter-channel four-wave mixing (FWM). The model has been implemented using the time-dependent transfer matrix method (TMM) and applying the discretization scheme in both the spatial and spectral domains. In SOA-based wavelength division multiplexing transmission systems using 10-Gb/s differential phase shift keyed (DPSK) signals, the system performance due to the SOA-induced phase-error and the FWM effect has been analyzed. By the injection of a reservoir channel into SOAs, the transmission performance of non-return-to-zero (NRZ) DPSK signals can be improved through the phase-error reduction. Both the NRZ-DPSK and return-to-zero (RZ) DPSK signals are found to be suffered from the FWM-induced crosstalk. The overall nonlinear tolerance of RZ-DPSK is shown to be better than that of NRZ-DPSK.  相似文献   

2.
We investigate 20 Gb/s wavelength conversion for return-to-zero differential phase-shift keying (RZ-DPSK) signal using four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). We show that the 10-Gb/s RZ-DPSK signal-to-pump ratio increases up to -0.286 dB with Q factor improvement of 1.663 dB for increasing the cascadeability of optical networks. The effect of variation in bandwidth for an ideal dual-arm Mach-Zehnder interferometer (MZI) is illustrated. For different bit rates, the converted power signal is investigated with increase in signal input power. We show that the quality of converted signal is best before the saturation of SOA. The dependence of four-wave mixing (FWM) efficiency and converted signal power with signal input power is also studied, and it is found that FWM efficiency decreases with increase in signal input power.

The impact of signal-to-pump power ratio, unsaturated amplifier gain, and pump power is further optimized with minimum Q factor penalty for 10-Gb/s and 20-Gb/s bit rate. We show that converted signal power increases up to power saturation level and then starts decreasing. We also show that with higher bit rate, we have a wide range of choices for pump power signal. We further investigate the quality of converted signal at 10 Gb/s, which shows an improvement over signal input power. Finally, the increase in transmission distance after wavelength conversion is investigated.  相似文献   

3.
Abstract

We investigate 20 Gb/s wavelength conversion for return-to-zero differential phase-shift keying (RZ-DPSK) signal using four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). We show that the 10-Gb/s RZ-DPSK signal-to-pump ratio increases up to ?0.286 dB with Q factor improvement of 1.663 dB for increasing the cascadeability of optical networks. The effect of variation in bandwidth for an ideal dual-arm Mach-Zehnder interferometer (MZI) is illustrated. For different bit rates, the converted power signal is investigated with increase in signal input power. We show that the quality of converted signal is best before the saturation of SOA. The dependence of four-wave mixing (FWM) efficiency and converted signal power with signal input power is also studied, and it is found that FWM efficiency decreases with increase in signal input power.

The impact of signal-to–pump power ratio, unsaturated amplifier gain, and pump power is further optimized with minimum Q factor penalty for 10-Gb/s and 20-Gb/s bit rate. We show that converted signal power increases up to power saturation level and then starts decreasing. We also show that with higher bit rate, we have a wide range of choices for pump power signal. We further investigate the quality of converted signal at 10 Gb/s, which shows an improvement over signal input power. Finally, the increase in transmission distance after wavelength conversion is investigated.  相似文献   

4.
We propose and demonstrate experimentally a novel scheme to realize all-optical up-conversion and wavelength-conversion based on the bi-directional-pump four-wave mixing (FWM) effect in high nonlinear fibers (HNLFs).The pump is generated with optical carrier suppression in a Mach-Zehnder modulator.The two pumps are always parallel and phase-locked.A balance-detection photo-detector for optical signal detection is employed with 3-dB improvement in power penalty.The 2.5-Gb/s signals are transmitted successfully over the 25-km single-mode fiber in 30-GHz radio over fiber (ROF) systems.  相似文献   

5.
以光正交频分复用信号作为光标记,利用两个不同波长的光载波分别经过强度调制,产生了10 Gb/sOOK光载荷和2.5 Gb/sOFDM光标记。测得了光分组信号经光纤传输前后接收载荷的眼图和标记的星座图以及误码率曲线,结果表明:经过40 km光纤传输后,载荷与标记的功率代价分别为1dB和0.5dB。  相似文献   

6.
A label swapping scheme of an optical labeled signal with differential phase shift keying(DPSK) for label at 2.5 Gb/s and pulse position modulation(PPM) for payload at 40 Gb/s is demonstrated by simulation.Power penalties of ~1.8 and ~0.8 dB are achieved for both the payload and label over 80-km single mode fiber(SMF) transmission.This labeling scheme allows the use of four-wave mixing(FWM) in semiconductor optical amplifier(SOA) to perform label erasure,with advantages of transparence for bit rate,high processing rate,simple architecture,and low cost.Label swapping is demonstrated with appropriate penalties of-3.5 and 0.8 dB for PPM payload and new DPSK label,respectively.To further prove the effectiveness of the proposed scheme,label swapping in the case of using 10-Gb/s DPSK label is also investigated with the power penalties of 6 and 2 dB for PPM payload and new DPSK label.  相似文献   

7.
卢嘉  董泽  曹子峥  陈林  余建军 《光子学报》2014,38(11):2857-2862
研究了基于半导体光放大器平行双抽运对光正交频分复用信号进行全光波长变换的系统.信号光源经2Gb/s电信号直接调制后再和双抽运光耦合,经半导体光放大器后,由于四波混频效应而产生新的波长的信号光.实验结果显示,经半导体光放大器四波混频效应后,产生新的波长的信号光将携带OFDM信号且偏振不敏感,转换效率与双抽运光之间的波长间隔,抽运与信号光波长间距,信号光与泵浦光之间的偏振夹角等有关.同时也测量了转换的OFDM信号的功率-误码曲线和接收星座图.  相似文献   

8.
A novel radio-over-fiber (ROF) scheme simultaneously to modulate and transmit 10-Gb/s baseband and 60-GHz microwave signals on a single wavelength using single-sideband (SSB) modulation technique is proposed and verified by simulation. The scheme is based on a Dual-Parallel Mach-Zehnder Modulator (DPMZM). The scheme can carry the microwave signals on either the upper sideband (USB) or the lower sideband (LSB) only and the baseband signals on the other sideband. The optical 60-GHz millimeter wave (mm-wave) carrier is generated by means of subcarrier-multiplexing (SCM) technique to carry 155-Mb/s baseband signals while 10-Gb/s baseband signals are imposed on the original optical carrier via SSB modulation. The signals with dual services are successfully transmitted over 50-km single-mode fiber.  相似文献   

9.
研究了基于半导体光放大器平行双抽运对光正交频分复用信号进行全光波长变换的系统.信号光源经2Gb/s电信号直接调制后再和双抽运光耦合,经半导体光放大器后,由于四波混频效应而产生新的波长的信号光.实验结果显示,经半导体光放大器四波混频效应后,产生新的波长的信号光将携带OFDM信号且偏振不敏感,转换效率与双抽运光之间的波长间隔,抽运与信号光波长间距,信号光与泵浦光之间的偏振夹角等有关.同时也测量了转换的OFDM信号的功率-误码曲线和接收星座图.  相似文献   

10.
董建绩  张新亮  黄德修 《光学学报》2008,28(7):1327-1332
实验报道了利用半导体光放大器(SOA)的四波混频(FWM)效应实现多种码型的波长转换.其中对于非归零(NRZ)信号实现了从单信道到三信道的多波长转换.调制速率从10 Gb/s到40 Gb/s均实现多波长转换.对于归零(RZ)信号分别实现了20 Gb/s和40 Gb/s的RZ格式的波长转换和40 Gb/s的载波抑制归零(CSRZ)格式的波长转换,利用光纤布拉格光栅(FBG)作为带陷滤波器消除共轭光和抽运光之间的串扰.对于非归零差分相移键控(NRZ_DPSK)信号分别实现了20 Gb/s和40 Gb/s的波长转换,利用实验室自制的光纤延时干涉仪进行NRZ-DPSK信号的解调.基于FWM效应的转换光的输出消光比大于7 dB,转换后消光比退化约为3 dB.  相似文献   

11.
A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the proposed wavelength converter is analyzed in term of extinction ratio (ER) through numerical simulations. For a typical ER of 10 dB, some key characteristic parameters of the semiconductor optical amplifier (SOA) are designed. With the properly designed parameters, a high quality eye diagram is achievable, indicating that the amplitude fluctuation of the output signal is effectively reduced.  相似文献   

12.
The pattern-induced intensity fluctuation (PIF) of output signals with a bit-rate above 160 Gb/s has been one of the major issues regarding all-optical semiconductor gates. We have demonstrated that the nonlinear polarization rotation (NPR) in the semiconductor optical amplifier (SOA) plays a significant role in the high-frequency operation of a delayed-interference signal-wavelength converter (DISC). We did this using a cross-correlation system whose temporal resolution is 1.5 ps which was developed to monitor our 200-Gb/s, 4992-bit-long binary-patterned waveforms. When we experimentally optimized the NPR effect inside our DISC specially for our 200-Gb/s wavelength conversion, the PIF was significantly improved (from 5.0 to 1.5, for example). Our systematically measured dependence of the PIF on the polarization settings was qualitatively explained with the new gate model that we developed earlier in this work.  相似文献   

13.
As the Internet data traffic increases explosively, the optical networks will evolve into "photonic networks", in which "wavelength" label is used to route large-capacity optical signals at optical path cross connect (OPXCs) nodes. Further development of ultrafast all-optical processing technologies enables us to further upgrade the photonic networks into those with much more flexibility and higher transparency, where ultrafast optical signals of any bit rates (2.5, 10, 40, 100, 160 G/ch) and frame/modulation formats (GbE, 10 GbE, SDH, OTN/ NRZ, RZ, CS-RZ, RZ-DPSK, etc.) are processed and transmitted all-optically without optical-electrical-optical (O-E-O) conversion from end-to-end.  相似文献   

14.
We report the adaptive compensation experiment of polarization mode dispersion (PMD) for 10-Gb/s non return-to-zero (NRZ) and return-to-zero (RZ) optical communication systems using a two-stage PMD compensator and the monitoring technique based on degree of polarization (DOP) feedback-signals. The DOP monitor has its advantages of bit-rate independent and modulation format independent. The two-stage compensator has the capacity of compensation for the first- and second-order PMD. The compensated differential group delay (DGD) is up to 80 ps, and compensated principal state of polarization rotation rate is 20 ps. The time used for compensation is less than 1 second.  相似文献   

15.
Using differential detection,we perform polarization-multiplexing 160-Gb/s optical non-return-to-zero(NRZ) differential quadrature phase shift keying(DQPSK) signal transmission over 100-km standard single mode fiber at a bit error rate(BER) of less than 10-9.The enabling technology includes clock recovery,fine dispersion compensation,and polarization tracking for de-multiplexing.Furthermore,a hybrid clock recovery scheme is proposed.The scheme is realized with ordinary devices using an optoelectrical modula...  相似文献   

16.
A novel approach is used to implement optical carrier suppression and separation (OCSS) labeling. Then, the performance of 10/40-Gb/s duobinary payload with 2.5-Gb/s amplitude shift keying (ASK) or duobi- nary label by numerical simulations is studied. Influencing factors, such as demultiplexer bandwidth and fiber Bragg grating (FBG) filter bandwidth, are investigated. Simulation result shows that the received sensitivity of ASK label is higher than that of the duobinary label, while the received sensitivity of duobi- nary payload with duobinary label is higher than that with ASK label.  相似文献   

17.
Yufeng Shao  Nan Chi 《Optics Communications》2012,285(10-11):2580-2583
In this paper, we propose and experimentally demonstrate a novel optical packet switching scheme with one core router and two edge routers, in which an orthogonal frequency division multiplexing (OFDM) signal is generated as a label. In this experiment there are two transmission spans, each span consists of 50-km SMF-28 and an erbium-doped optical fiber amplifier (EDFA) without dispersion management. A 10 Gb/s on-off keying (OOK) optical payload and a 2.5 Gb/s OFDM optical label are generated, encapsulated, and transmitted in the first span. And then old label is replaced by new label, the generated new optical packet after transmission over the second span is detached and detected. The transmission performance of the optical label and payload is experimentally investigated at the ingress router, core router and egress router.  相似文献   

18.
We theoretically discuss 40 Gb/s semiconductor optical amplifier (SOA)-based wavelength conversion (WC) using a detuning optical bandpass Jilter based on ultrafast dynamic characteristics of SOA. Both the inverted and noninverted WCs are obtained by shifting the filter central wavelength with respect to the probe wavelength when input data signal is in return-to-zero (RZ) format. However, we can obtain format conversion from nonreturn- to-zero (NRZ) to pseudo-return-to-zero (PRZ) and inverted WC when the input signal is in NRZ format.  相似文献   

19.
A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the NRZ data are evidently achieved. Alloptical clock recovery from NRZ data at 10 Gb/s is successfully demonstrated with the proposed NRZ-to-PRZ converter and a mode-locked SOA fiber laser. Furthermore, NRZ-to-RZ format conversion of 10 Gb/s is realized by using the recovered clock as the control light of terahertz optical asymmetric demultiplexer(TOAD), which further proves that the proposed clock recovery scheme is applicable.  相似文献   

20.
We propose the high speed signal wavelength conversion based on stimulated Raman effect on silicon waveguides. Simulation results of non-return-to-zero (NRZ) pseudorandom bit sequence (2^7-1 code) at 500-Gb/s rate of conversion in an ultrasmall silicon-on-insulator (SOI) optical waveguide are presented by co-propagating pump optical field. The most attractive issue is that the inverted converted signal can be obtained at the same wavelength as that of primary signal. In addition, the conversion performances, including extinction ratio (ER) and average peak power of conversion signal, depend strongly on the launching pump intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号