首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report results of the first laser collimation of a thermal beam of Fe atoms on the leaky 5D4 5F5 transition, with both parallel linear xx and crossed linear xy laser polarization configurations. The measured atomic beam divergence is compared to a rate-equation model and a quantum Monte Carlo model. The experimental values for the divergence are limited by the finite laser line width, which is comparable to the natural line width of the Fe atom. In general, flux decreases with higher intensities, showing the effect of the leaky transition. At the best beam collimation RMS = 0.17 mrad, which is for a detuning of = – and a saturation parameter of s = 6, the flux decreased to approximately 70%. Highest flux was measured for a detuning of = –2 and s = 4, reaching 135% of the uncooled value. From our measurements we estimate the total leak rate to be 1/(240 ± 40), which is in good agreement with the literature value of 1/244. The crossed linear polarization configuration is the better choice, with a slightly better collimation but the same atomic beam flux. Plugging of the largest leak would increase the flux to at least 80% of the closed transition value, resulting in better contrast for atom lithography.  相似文献   

2.
Separation of isotopes of barium has been accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s2 1S0− 6s6p1P1 5536 Å resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. In barium, repeated absorptions and emissions on the 5536 Å transition eventually result in decay from the 6s6p1P1 state to the metastable 6s5d1D2 state. This was observed to occur for all but 3% of the138Ba atoms. As a result, the efficiency of separation was about 0.7 for the 8 mrad atomic beam divergence employed. (Throughput was nearly 1 mg/day. No attempt was made to maximize this value.) The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. The effects of near resonant atomic scattering and excitation exchange on isotopic purity are considered. Work performed under the auspices of the U.S. Energy Research & Development Administration.  相似文献   

3.
We study theoretically the formation of Cs+ and during cw laser radiation resonant with 6s-7p transition of Cs atomic vapor. This is done by numerically solving rate equations for the evolution of atomic state and electron populations. The results of calculations for the atomic and molecular ions density at different values of laser power clarified that the associative ionization and Penning ionization process play an important role for producing the and Cs+, respectively, during the plasma formation. Also, the results showed that laser power of the order of 150 mW and 40-50 ns irradiation time are optimal in producing a fully ionized plasma.  相似文献   

4.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

5.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

6.
An organo-metallic complex, [(CH3)4N][Ni(dmit)2] (dmit2− = (1,3-dithiole-2-thione-4,5-dithiolate), abbreviated as MeNi, is synthesized. The nonlinear optical absorption properties of MeNi dissolved in acetone have been studied using the open-aperture Z-scan technique with 40 ps pulse width at 1064 nm and 1 ns, 15 ns pulse width at 1053 nm, respectively. Strong saturable absorption has been found when the sample solution is irradiated by 40 ps and 1 ns laser pulses. While irradiated with 15 ns laser pulse, a stronger reverse saturable absorption has been found. The nonlinear optical absorption coefficients are −1.03 × 10−11 m/W, −1.85 × 10−11 m/W and 3.84 × 10−10 m/W, respectively. The mechanism responsible for the difference between the results is analyzed. All the results suggest that this material may be a promising candidate for the application to laser pulse compression in the near-infrared waveband.  相似文献   

7.
The metastable 3s3p3P0, 1, 2 states of the magnesium atom immersed into superfluid helium have been investigated. Absorption-fluorescence measurements were carried out to monitor the population of the3P0,3P1 and3P2 level as a function of time. The population of these levels was found to decrease exponentially with a constant of =15±2 ms. This is about three times as long as the vacuum lifetime of the3P1 level. In the resonant excitation band of the 3s3p3P states to the 3s4s3S state a blueshift of 70 nm compared to the emission and a large broadening were detected. The3P2 and3P0 states are not at all metastable any more. Additionally the weak intercombination transition of the3P1 state to the1S0 ground state was investigated by monitoring this emission line as a function of time and of wavelength. The experiments resulted in the same exponential decay time as the excitation measurement. This outcome indicates a rather effective fine structure mixing of the considered Mg states in superfluid helium. Moreover, this raises the question whether common atomic quantum numbers are conserved and the selection rules are still valid.  相似文献   

8.
A strong optogalvanic effect has been observed in a negative glow of a miniature neon discharge lamp using tunable pulse dye laser pumped by a copper vapor laser. A comparative study on temporal evolution of optogalvanic signal in a positive and negative dynamic resistance region of the discharge is described. Dye laser beam was tuned to various neon transitions 1si → 2pj (Paschen notations) within 570-617 nm wavelength range. Anomalous behavior of optogalvanic signal was observed at 588.2 nm for (1s5 → 2p2) neon transition at low discharge current (<220 μA). This anomalous behavior is the attributes of damped oscillations of optogalvanic signal that correlate with negative dynamic resistance (dV/di < 0) of the discharge. Penning ionization at low discharge current and small energy mismatch is assumed to be the main cause of the negative dynamic resistance. Penning ionization process has been explained by resonantly ionizing energy transfer via collisions between neon buffer gas atoms in the lowest metastable state (1s5) and electrode sputtered atoms in ground state using their partial energy level diagram.  相似文献   

9.
We have demonstrated that resonance-enhanced two-photon ionization of atomic beams provides an effective tool for isotope selective loading of ions into a linear Paul trap. Using a tunable, narrow-bandwidth, continuous wave (cw) laser system for the ionization process, we have succeeded in producing Mg+ and Ca+ ions at rates controlled by the atomic beam flux, the laser intensity, and the laser frequency detuning from resonance. We have observed that with a proper choice of control parameters, it is rather easy to load a specific number of ions into a string. This observation has direct applications in quantum optics and quantum computation experiments. Furthermore, resonant photo-ionization loading facilitates the formation of large isotope-pure Coulomb crystals. Received: 21 December 1999 / Published online: 11 May 2000  相似文献   

10.
Silicon carbide (SiC), as it is well-known, is inaccessible to usual methods of technological processing. Consequently, it is important to search for alternative technologies of processing SiC, including laser processing, and to study the accompanying physical processes. The work deals with the investigation of pulsed laser radiation influence on the surface of 6H-SiC crystal. The calculated temperature profile of SiC under laser irradiation is shown. Structural changes in surface and near-surface layers of SiC were studied by atomic force microscopy images, photoluminescence, Raman spectra and field emission current-voltage characteristics of initial and irradiated surfaces. It is shown that the cone-shaped nanostructures with typical dimension of 100-200 nm height and 5-10 nm width at the edge are formed on SiC surface under nitrogen laser exposure (λ = 0.337 μm, tp = 7 ns, Ep = 1.5 mJ). The average values of threshold energy density 〈Wthn〉 at which formation of nanostructures starts on the 0 0 0 1 and surfaces of n-type 6H-SiC(N), nitrogen concentration nN ≅ 2 × 1018 cm−3, are determined to be 3.5 J/cm2 and 3.0 J/cm2, respectively. The field emission appeared only after laser irradiation of the surface at threshold voltage of 1000 V at currents from 0.7 μA to 0.7 mA. The main role of the thermogradient effect in the processes of mass transfer in prior to ablation stages of nanostructure formation under UV laser irradiation (LI) was determined. We ascertained that the residual tensile stresses appear on SiC surface as a result of laser microablation. The nanostructures obtained could be applied in the field of sensor and emitting extreme electronic devices.  相似文献   

11.
The dichroic atomic vapor laser locking (DAVLL) spectra on the 1S0-3P1 transition of neutral mercury atoms are reported for the first time. Two classes of DAVLL line shapes corresponding to single resonant transition and the combinations of several transitions are experimentally observed and compared with numerical simulation. The dependences of peak-to-peak amplitude and the slope near the zero-crossing point on the axial magnetic field and cell temperature are also investigated. A simple model was introduced to briefly estimate the optimal magnetic field with the largest slope. The optimal operating parameters in a 1 mm cell are highlighted to use DAVLL to lock the frequency of the 253.7 nm UV trap laser of mercury atoms.  相似文献   

12.
We study the surface chemicals and structures of aluminum plates irradiated by scanning femtosecond laser pulses in air for a wide range of laser fluence from 0.38 to 33.6 J/cm2. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate clearly that crystalline anorthic Al(OH)3 is formed under femtosecond laser pulse irradiation. Besides aluminum hydroxide, crystalline Al2O3 is also found in the samples irradiated at high laser fluence. Field emission scanning electron microscopy demonstrates that the surfaces of the samples irradiated with low laser fluence are colloidal-like and that nanoparticles with a few nanometers in size are embedded in glue-like substances. For high laser fluence irradiated samples, the surfaces are highly porous and covered by nanoparticles with uniform size of less than 20 nm.  相似文献   

13.
14.
The nature of grey spots on the surface of amorphous Fe67Cr18B15 metglass ribbons irradiated by 30 keV Ar+ ions is investigated. Changes in the surface and volume properties of samples are analyzed bearing in mind the presence of competitive processes of ordering and disordering in the structure under irradiation at initial stage of crystallization (T = 500 °C). Changes in the volume properties of the samples become apparent in their structure, electrical and magnetic properties and are caused by radiation-enhanced diffusion at high gradients in the concentration of defects generated by Ar+ irradiation. It is established that grey spots are shown by decrease in the reflection coefficient in a visible range. They emerge as a result of reorganization in the electronic structure of irradiated ribbons due to damage in the short-range order and formation of non-uniformly scaled atomic structure during transition from the medium-range to the long-range atomic order. Experimental data are in accord with the calculations in the framework of the free electrons model.  相似文献   

15.
This paper reports an experimental study on the collimation and decollimation of an atomic beam in a misaligned standing wave, in which the effective detuning caused by the Doppler effect is affected by the longitudinal velocity of the atomic beam. The experiment shows that in a strong field with red detuning between laser field and atomic transition frequency, laser heating in a normal standing wave becomes laser cooling in a misaligned standing wave for an approriate misalignment angle. For blue detuning, laser cooling in a standing wave can also become laser heating in a misaligned standing wave for an appropriate condition. These results ca be used in controling atomic motion.  相似文献   

16.
Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/24I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection.  相似文献   

17.
A novel atomic lens scheme is reported. A cylindrical lens potential was created by a large period ( 45 m) standing light wave perpendicular to a beam of metastable He atoms. The lens aperture (25 m) was centered in one antinode of the standing wave; the laser frequency was nearly resonant with the atomic transition 23 S 1–23 P 2 (=1.083 m) and the interaction time was significantly shorter than the spontaneous lifetime (100 ns) of the excited state. The thickness of the lens was given by the laser beam waist (40 m) in the direction of the atomic beam. Preliminary results are presented, where an atomic beam is focused down to a spot size of 4 m. Also, a microfabricated grating with a period of 8 m was imaged. We discuss the principle limitations of the spatial resolution of the lens given by spherical and chromatic aberrations as well as by diffraction. The fact that this lens is very thin offers new perspectives for deep focusing into the nm range.  相似文献   

18.
Bright thermal atomic beams by laser cooling: A 1400-fold gain in beam flux   总被引:4,自引:0,他引:4  
Using a three-step transverse laser cooling scheme, a strongly diverging flow of metastable Ne(3s 3 P 2] atoms is compressed into a well-collimated, small diameter atomic beam (e.g., 1.4 mrad HWHM divergence at 3.6 mm beam diameter) with an unmodified axial velocity distribution centered at 580 m/s. The maximum increase in beam flux 1.04 m downstream of the source is a factor 1400; the maximum increase in phase space density, i.e., brightness, is a factor 160. The laser power used is only 140 mW. The scheme is extendable to a large variety of atomic species and enables the application of bright atomic beams in many areas of physics.  相似文献   

19.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

20.
We experimentally and theoretically study the interaction of broadband polychromatic laser pulses with an optically dense resonant extended medium without population inversion. Experimental (probe field-pumping beam) measurements of the transmission and amplification spectra were carried out in the plasma of a positive neon glow-discharge column containing a large number of metastable atoms. The strong coupling in the field-matter system and the collective behavior of the atomic system in a resonant field were attributable to a high (~1012 cm?3) density of atoms at the lower (metastable) level of the optical transitions under consideration and to a relatively low intensity of the interacting laser beams. We observed a broadband weakening of the probe field in the absence of pumping and its strengthening in the line wings in the presence of a strong field. We develop a theoretical model for the parametric amplification of collective interactions in dense extended media based on the solution of the semiclassical Maxwell-Bloch equations for conditions under which the pumping field does not destroy the dipole interaction between atoms through probe-field photons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号