首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cadmium sulfide thin films have been deposited on glass substrates by simple and cost effective chemical bath deposition technique. Triethanolamine was used as a complexing agent. The preparative parameters like ion concentration, temperature, pH, speed of substrate rotation and deposition time have been optimized for good quality thin films. The ‘as-grown’ films are characterized for structural, electrical, optical and photoelectrochemical (PEC) properties. The X-ray diffraction (XRD) studies reveal that the films are polycrystalline in nature. Energy-dispersive analysis by X-ray (EDAX) shows that films are cadmium rich. Uniform deposition of CdS thin films on glass substrate is observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs. Optical studies reveal a high absorption coefficient (104 cm−1) with a direct type of transition. The band gap is estimated to be 2.47 eV. The film shows n-type conduction mechanism. The photoelectrochemical (PEC) cell with CdS thin film as a photoanode and sulfide/polysulfide (1 M) solution as an electrolyte have been constructed and investigated for various cell parameters. The solar to electrical conversion efficiency (η) and fill factor (ff) are found to be 0.049% and 0.36, respectively.  相似文献   

2.
Series of Fe thin films have been prepared by thermal evaporation onto glass and Si(1 0 0) substrates. The Rutherford backscattering (RBS), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the four point probe techniques have been used to investigate the structural and electrical properties of these Fe thin films as a function of the substrate, the Fe thickness t in the 76-431 nm range and the deposition rate. The Fe/Si samples have a 〈1 1 0〉 for all thicknesses, whereas the Fe/glass grows with a strong 〈1 0 0〉 texture; as t increases (>100 nm), the preferred orientation changes to 〈1 1 0〉. The compressive stress in Fe/Si remains constant over the whole thickness range and is greater than the one in Fe/glass which is relieved when t > 100 nm. The grain size D values are between 9.2 and 30 nm. The Fe/glass films are more electrically resistive than the Fe/Si(1 0 0) ones. Diffusion at the grain boundary seems to be the predominant factor in the electrical resistivity ρ values with the reflection coefficient R greater in Fe/glass than in Fe/Si. For the same thickness (100 nm), the decrease of the deposition rate from 4.3 to 0.3 Å/s did not affect the texture and the reflection coefficient R but led to an increase in D and a decrease in the strain and in ρ for both Fe/glass and Fe/Si systems. On the other hand, keeping the same deposition rate (0.3 Å/s) and increasing the thickness t from 76 to 100 nm induced different changes in the two systems.  相似文献   

3.
A simple technique is given for measuring stresses in reflecting thin films, using real-time holography. The technique gives clear real fringes with good visibility which can be easily monitored and photographed. No substrate profile measurement is needed. Thermal stress of 0.49 × 109 dynes cm-2 is observed for a 200.0 nm thick Ag film in the temperature range of 30 to 55°C. This is in good agreement with reported values.  相似文献   

4.
Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30° and 70° incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70° incidence angle.  相似文献   

5.
The pulsed laser deposition technique was used to produce zinc oxide thin films onto silicon and Corning glass substrates. Homogeneous surfaces exhibiting quite small Root Mean Square (RMS) roughness, consisting of shaped grains were obtained, their grain diameters being 40-90 nm at room temperature and at 650 °C growth respectively. Films were polycrystalline, even for growth at room temperature, with preferential crystallite orientation the (0 0 2) basal plane of wurtzite ZnO. Temperature increase caused evolution from grain to grain agglomeration structures, improving crystallinity. Compressive to tensile stresses transition with temperature was found while the lattice constant decreased.  相似文献   

6.
An optical system for the parallel evaluation of in- and out-of-plane dynamical deformations will be described. A double pulse laser with pulse separation in the microsecond range is used for the investigations. Two separate interferograms of an object under test, in its undeformed and deformed state, are recorded in a few microseconds. The object is illuminated from two different directions and imaged onto a CCD sensor. This produces two sensitivity vectors. The reference beams have different directions in order to produce two directional spatial carriers. The Fourier method is used for quantitative evaluation, and the measurements along different sensitivity vectors are separated in the Fourier domain. The phases of the two interferograms are obtained from the complex amplitudes and the two dimensional deformation is calculated from the phases. Experimental results are presented.  相似文献   

7.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   

8.
Using the spectrally resolved white light interferometry we present our experimental results on the measurement of the optical constants of thin polymer films coated on a transparent substrate. As an extension to our previous work (J. Opt. Soc. Am. B12, 1559 (1995)) on thick glass plates, we have shown here that this technique can be effectively applied to very thin polymer films also. We have improved the accuracy of our results by using the Sellmeier dispersion formula for fitting the data. From the width and position of the zero-order fringe and the frequency of modulations in the white light spectrum, the refractive indexn(λ) and thicknesst of the thin polymer films are calculated. To study the accuracies involved in the technique, PVA, PMMA and PS films of varied thicknesses are coated on glass plates and the measured values are compared with ellipsometer studies.  相似文献   

9.
The zinc selenide thin films have been deposited using modified chemical bath deposition (M-CBD) method. Zinc acetate and sodium selenosulphate were used as Zn2+ and Se2− ion sources, respectively. The preparative parameters such as concentration, pH, number of deposition cycles have been optimized in order to deposit ZnSe thin films. The as-deposited ZnSe thin films are specularly reflective and faint yellowish in color. The as-deposited ZnSe films are annealed in an air atmosphere at 473 K for 2 h. The films are characterized using structural, morphological, compositional, optical and electrical properties.  相似文献   

10.
《Current Applied Physics》2018,18(12):1513-1522
Bismuth telluride (Bi2Te3) thin films were prepared with various electrolyte temperatures (10°C–70 °C) and concentrations [Bi(NO3)3 and TeO2: 1.25–5.0 mM] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of Bi2Te3 thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [1.08 μW/(cm·K2)] was obtained at 3.75 mM. Therefore, to produce electrodeposited Bi2Te3 films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low (30 °C) and the electrolyte concentration should be set at 3.75 mM.  相似文献   

11.
ZnS/MnS super lattice thin films were grown on glass substrates by Chemical Bath Deposition technique. Equimolar aqueous solutions of ZnCl2:thiourea and MnCl2·2H2O:thiourea were taken separately. The substrates were placed vertically in the beakers containing the precursor described above, and the films are deposited at 85 °C for an hour. The as deposited films are annealed at 200 °C for about two hours. X-ray diffractometry method was used to obtain structural characterization. The UV–vis absorption spectrometry was employed to find the optical properties. The refractive-index, dielectric constant, optical conductivity, electrical conductivity and extinction coefficient were determined by various equations based on the data. The valence band and conduction band offset voltages for ZnS/MnS were determined as 0.7 eV and 0.1 eV respectively and for MnS/ZnS were 0.4 eV and 0.3 eV respectively. The band alignment of both superlattice was found to be as Type I.  相似文献   

12.
Telschow KL  Deason VA 《Ultrasonics》2002,40(10):1025-1035
An important material property in the paper industry is the anisotropic stiffness distribution due to the fibrous microstructure of paper and to processing procedures. Ultrasonic methods offer a means of determining the stiffness of sheets of paper from the anisotropic propagation characteristics of elastic Lamb waves along the machine direction and the cross direction. That is, along and perpendicular to the direction of paper production. Currently, piezoelectric ultrasonic methods are employed in the industry to measure the elastic polar diagram of paper through multiple contacting measurements made in all directions. This paper describes a new approach utilizing the INEEL Laser Ultrasonic Camera to provide a complete image of the elastic waves traveling in all directions in the plane of the paper sheet. This approach is based on optical dynamic holographic methods that record the out of plane ultrasonic motion over the entire paper surface simultaneously without scanning. The full-field imaging technique offers great potential for increasing the speed of the measurement and it ultimately provides a substantial amount of information concerning local property variations and flaws in the paper. This report shows the success of the method and the manner in which it yields the elastic polar diagram for the paper from the dispersive flexural or antisymmetric Lamb wave.  相似文献   

13.
《Physics letters. A》2020,384(26):126199
In the present work, high quality Pb doped ZnS thin films were deposited on glass substrates at 450°C using spray ultrasonic technique. The dependence of the structural, morphological and optical properties of the films on the lead (Pb) doping amount was investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis–NIR spectrophotometry, and four-point method. The improvement of the obtained Pb:ZnS thin films properties were discussed as a function of Pb concentration (0.5 to 2 at.%). The average crystallite size of Pb:ZnS was found in the range of 25–37 nm. The scanning electron microscopy (SEM) reveals that the films are continuous, homogeneous and dense. The UV–vis–NIR spectroscopy characterizations demonstrated that all the films exhibit good transmittance (60–70%) in the visible region and their optical band gap energy (Eg) changes from 3.92 to 3.6 eV. The films electrical resistivity showed an apparent dependence on Pb content.  相似文献   

14.
A single-step electrosynthesis of copper ferrite thin films from aqueous bath (which avoids anodization step for an incorporation of oxygen species into deposit) has been carried out at room temperature. Observed tetrahedral structured nanocrystalline copper ferrite thin films showed smooth, uniform and compact surface morphology. After annealing, increase in dielectric constant and reduced dielectric loss were observed. The saturation magnetization for annealed films was 292 emu/cm3 comparable to that of other reported ferrites.  相似文献   

15.
In electrodeposition, substrate besides providing mechanical support to the electrodeposit, affects significantly the structural and morphological properties of a film. Electrodeposition and characterization of EuTe thin films onto different substrates such as stainless steel (SS), titanium (Ti), copper (Cu), fluorine-doped tin oxide (F:SnO2) covered glasses have been described. The deposition potentials have been estimated from the polarization curves. The reaction mechanism is proposed for the formation of EuTe electrodeposits. Preparative parameters such as deposition potential, current density, and deposition time are studied. The films have been characterized by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive analysis by X-rays (EDAX) techniques. The electrodeposited EuTe films are polycrystalline on all the substrates with same cubic crystal structure. The SEM studies reveal that the surface morphology is different for the substrates studied. However, no cracks have been observed in the SEM micrographs. The AFM images show large spherical grains supporting the polycrystalline nature of the samples. The EDAX analysis shows that the EuTe films are nearly stoichiometric, slightly rich in tellurium.  相似文献   

16.
The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10?cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10?cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4?±?0.4?GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10?cm axial distance with 15 PFS.  相似文献   

17.
Composite films of TiN/Ni3N/a-Si3N4 were synthesized using the Mather-type plasma focus device with varying numbers of focus deposition shots (5, 15, and 25) at 0° and 10° angular positions. The composition and structural analysis of these films were analyzed by using Rutherford backscattering (RBS) and X-ray diffraction (XRD). Scanning electron microscope and atomic force microscope were used to study the surface morphology of films. XRD patterns confirm the formation of composite TiN/Ni3N/a-Si3N4 films. The crystallite size of TiN (200) plane is 11 and 22 nm, respectively, at 0° and 10° angular positions for same 25 focus deposition shots. Impurity levels and thickness were measured using RBS. Scanning electron microscopy results show the formation of net-like structures for multiple focus shots (5, 15, and 25) at angular positions of 0° and 10°. The average surface roughness of the deposited films increases with increasing focus shots. The roughness of the film decreases at higher angle 10° and the films obtained are smoother as compared with the films deposited at 0° angular positions.  相似文献   

18.
Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47.  相似文献   

19.
ZrSiN thin films are synthesized by using plasma focus through various numbers of focus shots (10, 20, and 30), with samples placed at 9 cm away from the tip of the anode. Crystal structures, surface morphologies, and elemental compositions of ZrSiN films are characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM) attached with energy dispersive X-ray spectroscopy (EDS). XRD patterns confirm the formations of polycrystalline ZrSiN films. Crystallinity of nitride increases with the increase of focus shot number. The average crystallite size of zirconium nitride increases from 27 ± 3 nm to 73±8 nm and microstrain decreases from 2.28 to 1.0 with the increase of the focus shot number. SEM results exhibit the formations of granular and oval-shaped microstructures, depending on the number of focus shots. EDS results confirm the presences of silicon, zirconium, nitrogen, and oxygen in the composite films. The content values of Zr and N in the composite films increase with the increase of the focus shot number.  相似文献   

20.
Thin films of CdTe have been deposited onto stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using electrodeposition technique. The different preparative parameters, such as deposition time, bath temperature and pH of the bath have been optimized by photoelectrochemical (PEC) technique to get good quality photosensitive material. The deposited films are annealed at different temperature in presence of air. Annealing temperature is also optimized by PEC technique. The film annealed at 200 °C showed maximum photosensitivity. Different techniques have been used to characterize as deposited and also as annealed (at 200 °C) CdTe thin film. The X-ray diffraction (XRD) analysis showed the polycrystalline nature, and a significant increase in the XRD peak intensities is observed for the CdTe films after annealing. Optical absorption shows the presence of direct transition with band gap energy 1.64 eV and after annealing it decreases to 1.50 eV. Energy dispersive analysis by X-ray (EDAX) study for the as-deposited and annealed films showed nearly stoichiometric compound formation. Scanning electron microscopy (SEM) reveals that spherically shaped grains are more uniformly distributed over the surface of the substrate for the CdTe film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号