首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We propose a switchable multi-wavelength erbium-doped fiber laser based on a four-mode fiber Bragg grating(FBG). The four-mode FBG is fabricated in a hydrogen pre-loaded fiber by the phase mask method, which can support four linearly polarized modes around 1550 nm. The five operation wavelengths are at 1547.5, 1546.8,1546.0, 1545.1, and 1544.2 nm, respectively. Through adjusting the polarization state and the lateral offset coupling in cavity, the laser can be switched into the operation state of single, dual, or triple wavelengths. The proposed laser has the advantages of simple configuration, stable operation, and easy adjustment.  相似文献   

2.
G. Sun  Y. Zhou  L. Cui  Y. Chung 《Laser Physics》2011,21(11):1914-1918
A multiwavelength switchable erbium-doped fiber laser with linear cavity is proposed and experimentally demonstrated. It is based on a fiber loop mirror incorporating a piece of high birefringence few-mode fiber and polarization controller. Due to dependence of its reflection properties on the polarization controllers, the fiber laser can operate in the random combination of three wavelengths by only adjusting the polarization controllers in the linear cavity. The wavelengths involved in the switching operation are determined by the merged Sagnac and intermodal interferences elicited in the fiber loop mirror. The optical signal to noise extinction ratio of every oscillation line is higher than 40 dB and power fluctuation less than 0.5 dB.  相似文献   

3.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

4.
A multi-wavelength fiber laser based on the cascaded four-wave mixing in highly-nonlinear photonic-crystal fiber is proposed and investigated. The cascade operation is initiated by two strong pump waves boosted by multi-mode pumping erbium/ytterbium co-doped double-cladding fiber amplification technique. A segment of highly-nonlinear near-zero-dispersion-flattened photonic crystal fiber is employed to induce highly efficient cascaded four-wave mixing. The wavelength spacing can be continuously tunable by stretching the fiber Bragg grating. Experimental results show that multiple wavelengths with a high optical side-mode suppression-ratio of >30 dB are achieved. Furthermore, the proposed multi-wavelength fiber laser exhibits an excellent stability at room temperature.  相似文献   

5.
In this paper, we report a new configuration of a tunable multi-wavelength erbium-doped fiber laser based on the commercial optical multiplexers and a Sagnac interferometer which includes a section of a high-birefringent photonic crystal fiber. Four-wavelength laser emission lines were obtained simultaneously in single-longitudinal mode operation showing a power instability lower than 1 dB, and an optical signal-to-noise ratio higher than 65 dB for all the emitted wavelengths. This proposed configuration allows the individual control of the loss of each channel of the laser and because of it is based on the commercial ITU-grid multiplexers, the laser is adapted to the telecommunications channel’s normative.  相似文献   

6.
We demonstrate experimentally the operation of a linear cavity dual-wavelength fiber laser using a polarization maintaining fiber Bragg grating (PM-FBG) as an end mirror that defines two closely spaced laser emission lines. The PM-FBG is also used to tune the laser wavelengths. The total tuning range is ∼8 nm. The laser operates in a stable dual-wavelength mode for an appropriate adjustment of the cavity losses for the generated wavelengths. The high birefringence (Hi-Bi) fiber optical loop mirror (FOLM) is used as a tunable spectral filter to adjust the losses. The FOLM adjustment was performed by the temperature control of the Hi-Bi fiber.  相似文献   

7.
A saturable absorber is commonly employed to generate an ultrashort laser with a mode-locking scheme. In an erbium-doped fiber laser system, the laser regimes of either 1530 or 1550 nm wavelength are procured based on the absorption profile of the erbium-doped fiber. The absorption of the erbium-doped fiber is designed to emit at both wavelengths by controlling the net gain of the laser cavity. Subsequently, simultaneous erbium-doped fiber laser emission is attained at 1533.5 and 1555.1 nm with the pulse duration of 910 and 850 fs, respectively.Therefore, this work maximizes the output portfolios of a mode-locking fiber laser for dual-wavelength ultrashort pulses emission.  相似文献   

8.
A temperature-insensitive strain sensor based on Four-Wave Mixing (FWM) using two Raman fiber Bragg grating (FBG) lasers with cooperative Rayleigh scattering is proposed. Two FBG were used to form two linear cavities laser sensors based on Raman amplification combined with cooperative Rayleigh scattering. Due to the very low dispersion coefficient of the fiber, it is possible to obtain the FWM using the two lasers. This configuration allows the operation as a temperature-insensitive strain sensor where both sensors have the same sensitivity to temperature but only one of the FBG laser is sensitive to strain. The difference between the wavelengths of the signal sensor and the converted signal presents a strain coefficient sensitivity of 2?pm/??? with insensitivity to temperature. The FWM efficiency is also dependent on the applied strain, but it is temperature independent, presenting a maximum sensibility of 0.01?dB/???.  相似文献   

9.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

10.
We report on the dual-wavelength operation in an erbium-doped fiber ring laser mode-locked through nonlinear polarization rotation technique. In addition to dual-wavelength continuous wave operation, alternative mode-locking at the dual wavelengths was realized experimentally. By analyzing the transmissivity of the laser cavity, we find the dual-wavelength operation is an intrinsic feature of the laser associating with the dispersive cavity loss. Numerical simulations confirm the experimental and theoretical results and further demonstrate that the location of the dual wavelengths and the separation between them closely depend on the cavity birefringence and the profile of the gain medium.  相似文献   

11.
We report on the observation of the modulation instability induced by cross-phase modulation in a dual-wavelength operation dispersion-managed soliton fiber ring laser with net negative cavity dispersion. The passively mode-locked operation is achieved by using a nonlinear polarization rotation technique. A new type of dual-wavelength operation, where one is femtosecond pulse and the other is picosecond pulse operation, is obtained by properly rotating the polarization controllers. When the dual-wavelength pulses are simultaneously circulating in the laser ring cavity, a series of stable modulation sidebands appears in the picosecond pulse spectrum at longer wavelength with lower peak power due to modulation instability induced by cross-phase modulation between the two lasing wavelengths. Moreover, the intensities and wavelength shifts of the modulation sidebands can be tuned by varying the power of the femtosecond pulse or the lasing central wavelengths of the dual-wavelength pulses. The theoretical analysis of the modulation instability induced by cross-phase modulation in our fiber laser is also presented.  相似文献   

12.
用两只光纤光栅(FBG)作波长选择器件,实现了一种能同时输出两个不同重复频率的光脉冲序列的双波长主动锁模环形腔光纤激光器。通过调速外加调制信号的频率,使其中一个波长工作在谐波锁模状态,另一个波长工作在有理数谐波锁模状态,实验在2GHz和2.5GHz的调制频率下都成功地获得了双波长且重复频率不同的光脉冲序列,脉冲宽度分别约为60ps和45ps。  相似文献   

13.
Pei Zhang 《中国物理 B》2022,31(6):64204-064204
Self-starting Q-switching, Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time. The central wavelengths of Q-switching, Q-switched mode-locking and mode-locking operation modes are 1569.7 nm, 1570.9 nm, and 1572 nm, respectively. The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB. The results validate the capability of generating soliton pulse by doped fiber saturable absorber. Furthermore, the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.  相似文献   

14.
We demonstrate a novel multi-wavelength fiber ring laser based on a gain clamped semiconductor optical amplifier. The number of lasing lines can be tuned by adjusting the loss inside the cavity. The wavelength interval between the wavelengths is 100 GHz. The proposed laser shows a stable operation with total intensity fluctuation for a single laser line within ±0.02 dB at room temperature for a period of 30-minutes.  相似文献   

15.
We demonstrated the experimental observation of the dark pulses with tunable repetition rate from an erbium-doped fiber ring laser. A considerable length of high nonlinear fiber is incorporated into the fiber ring laser to enhance the nonlinear intensity. In our experiment, both bright and dark pulses can be observed under the conditions of appropriately setting of the device in the cavity. Further study showed that the dark pulse is formed due to the cross coupling between two different lasing wavelengths. Particularly, dark pulse-train with multiple repetition rates was observed from the laser cavity and the repetition rate switchable operation can be realized by simply adjusting the polarization controller (PC) in the cavity. The operation of multiple repetition rates of dark pulses was further experimentally investigated and detected as a result of pulse splitting of each component with different wavelength.  相似文献   

16.
A broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror (HiBi-FLM) and a polarization controller is demonstrated experimentally. The measured transmission spectrum of HiBi-FLM covers a wide range from 1525 to 1575 nm. The wavelength of proposed laser can be flexibly tunable during this range of ∼50 nm by adjusting the polarization controller. In addition, the spacing of two wavelengths is adjustable by changing the length of HiBi fiber. The dual-wavelength lasers with the HiBi fiber length of 1 and 2 m are experimentally demonstrated and compared. The experimental results show that the proposed laser can stably operate on two wavelengths simultaneously at room temperature, and the output peak power variation is about 0.5 dB during 40 min.  相似文献   

17.
An injection-switchable erbium-doped fiber laser (EDFL) with two output ports based on a ring structure is proposed. Wavelength switching together with the switching of the dominating output port of the fiber laser is achieved by controlling the power of a tunable injection laser. The characteristics of the wavelength switching for different levels of the pump laser power and different wavelengths of the injection laser are studied experimentally.  相似文献   

18.
K. J. Zhou  Y. F. Ruan 《Laser Physics》2010,20(6):1449-1452
A novel erbium-doped fiber ring laser employing an all-polarization-maintaining fiber birefringent loop as a periodic filter is proposed and demonstrated. The laser using 1 nm interval filter generates four wavelengths with equal frequency spacing without using any techniques to overcome the homogeneous line broadening of the gain medium at room temperature. Room-temperature operation of dual-wavelengths with 0.56 nm spacing has also been realized.  相似文献   

19.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

20.
D. Chen  B. Sun  Y. Wei 《Laser Physics》2010,20(8):1733-1737
We propose a multi-wavelength laser source based on an enhanced four-wave-mixing (FWM) effect which is achieved when a highly nonlinear fiber (HNLF) and an Erbium-doped fiber amplifier (EDFA) are employed in a fiber loop. A multi-wavelength laser source with totally 28 new wavelengths and a wavelength spacing of 0.8 nm is demonstrated. The wavelength spacing of the proposed multi-wavelength laser source can be tuned from 0.1 to 5.0 nm, and output spectrum of the multi-wavelength laser source with the wavelength spacing of 0.4, 0.8, and 1.6 nm are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号