首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The scaling of the average gyration radius of polymers as a function of their length can be experimentally determined from ensemble measurements, such as light scattering, and agrees with analytical estimates. Ensemble techniques, yet, do not give access to the full probability distributions. Single molecule techniques, instead, can deliver information on both average quantities and distribution functions. Here we exploit the high resolution of atomic force microscopy over long DNA molecules adsorbed on a surface to measure the average end-to-end distance as a function of the DNA length, and its full distribution function. We find that all the scaling exponents are close to the predicted 3D values (upsilon=0.589+/-0.006 and delta=2.58+/-0.77). These results suggest that the adsorption process is akin to a geometric projection from 3D to 2D, known to preserve the scaling properties of fractal objects of dimension df<2.  相似文献   

2.
Experimental evidence indicates that bats can use frequency-modulated echolocation to identify objects with an accuracy of less than 1 μs. However, when modeling this process, it is difficult to estimate the delay times of multiple closely spaced objects by analyzing the echo spectrum, because the sequence of delay separations cannot be determined without information on the temporal changes in the interference patterns of the echoes. To extract the temporal changes, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates are introduced. The delay time for object 1 (T(1)) is estimated from the echo spectrum around the onset time. The T(2) is obtained by adding the T(1) to the delay separation between objects 1 and 2. Further objects are located in sequence by this procedure. Here echoes were measured from single and multiple objects at a low signal-to-noise ratio. It was confirmed that the delay time for a single object could be estimated with an accuracy of about 1.3 μs. The range accuracy was less than 6 μs when the frequency bandwidth was less than 10 kHz. The delay time for multiple closely spaced objects could be estimated with a high range resolution by extracting the interference pattern.  相似文献   

3.
We present a method for single-image passive ranging and three-dimensional (3D) imaging in incoherent light based on chiral phase coding. A chiral linear phase variation across the aperture of an optical system results in a frequency response with a characteristic pattern of fringes such that the spatial period and inclination of the pattern depend on the focusing error. From this dependency, the absolute focusing error and, hence, the distance to the object can be found. In the experiments a resolution of ~1.4 μm is achieved with a 20 mm aperture lens in a 4 mm interval at a distance of 140 mm from the lens. A resolution of ~0.7 mm is obtained at a distance of ~11 m with the range finder employing two 25.4 mm spherical mirrors spaced apart by ~140 mm. We also demonstrate 3D imaging of weakly textured objects.  相似文献   

4.
An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.  相似文献   

5.
Using frequency-modulated echolocation, bats can discriminate the range of objects with an accuracy of less than a millimeter. However, bats' echolocation mechanism is not well understood. The delay separation of three or more closely spaced objects can be determined through analysis of the echo spectrum. However, delay times cannot be properly correlated with objects using only the echo spectrum because the sequence of delay separations cannot be determined without information on temporal changes in the interference pattern of the echoes. To illustrate this, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The delay time for object 1, T1, can be estimated from the echo spectrum around the onset time. The delay time for object 2 is obtained by adding T1 to the delay separation between objects 1 and 2 (extracted from the first appearance of interference effects). Further objects can be located in sequence by this same procedure. This model can determine delay times for three or more closely spaced objects with an accuracy of about 1 micros, when all the objects are located within 30 micros of delay separation. This model is applicable for the range discrimination of objects having different reflected intensities and in a noisy environment (0-dB signal-to-noise ratio) while the cross-correlation method is hard to apply to these problems.  相似文献   

6.
提出了一种将Shape from Silhouette(SfS)技术应用在三坐标机上的新方法,即用摄像机获取图像,用三坐标机作移动平台,构建视觉测量系统,应用SfS技术对物体进行三维测量。该视觉测量系统扩展了坐标机功能,扩大了其应用范围。实验结果表明,该视觉测量系统具有SfS技术和坐标机两者的优点,重构物体三维模型的过程简单快捷,精度高于0.4mm,其结果可作为坐标机智能测量的基础,是一种非常实用的方法。  相似文献   

7.
Improvement of 3D acquisition and visualization in MRI.   总被引:1,自引:0,他引:1  
Three-dimensional (3D) visualization techniques are becoming an ever more important aid in the interpretation of tomographic data. Up to now, however, they have not received widespread use in MRI, because both acquisition and visualization techniques have been inadequate. In this paper we describe new 3D acquisition techniques which can acquire up to 128 slices with a resolution of 256 x 256 pixels in from 8 to 20 min. These techniques produce 3D data sets with excellent contrast and few motion artifacts, which are very well suited for 3D visualization techniques. For the visualization we investigate several rendering techniques, describe some improvements and compare their results. We found that there is no single method which renders all objects equally well. We show which shading method is best suited for different objects and why the other methods fail. Our studies suggest that in a 3D view with several objects each object should be rendered with a separate shading method. In so doing, 3D views can be generated which look like the real human anatomy.  相似文献   

8.
共焦显微镜三维轮廓快速测量方法及其误差分析   总被引:8,自引:3,他引:5  
孔兵  王昭  谭玉山  弥宁 《光子学报》2000,29(6):549-553
共焦显微术在生物学及工程应用中已成为一种有效的测量、观察方法。本文针对共 焦显微三维测量系统提出了一种高精度快速算法,并进行了误差分析与计算机仿真。对实际 共焦三维测量系统的设计具有重要意义。  相似文献   

9.
Qian Zhang 《中国物理 B》2022,31(6):65203-065203
Relativistic magnetic reconnection (MR) driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional (3D) kinetic relativistic particle-in-cell (PIC) code. We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment. As the separation distance becomes larger, the magnetization parameter σ becomes smaller. The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance. Moreover, the collisionless shocks' contribution to energetic electrons is close to the magnetic reconnection contribution with σ decreasing, which results in a steeper electron energy spectrum. Basing on the 3D outflow momentum configuration, the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameter σ is very high in the 3D outflow area.  相似文献   

10.
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.  相似文献   

11.
Zhang Z  Ma H  Zhang S  Guo T  Towers CE  Towers DP 《Optics letters》2011,36(5):627-629
Phase-based fringe projection metrology systems have been widely used to obtain the shape of 3D objects. One vital step is calibration, which defines the relationship between the phase and depth data. Existing calibration methods are complicated because of the dependence of the relationship on the pixel position. In this Letter, a simple calibration procedure is introduced based on an uneven fringe projection technique, in which the relationship between phase and depth becomes independent of the pixel position and can be represented by a single polynomial function for all pixels. Therefore, given a set of discrete points with a known phase and depth in the measuring volume, the coefficient set of the polynomial function can be determined. A white plate having discrete markers with known separation is used to calibrate the 3D imaging system. Experimental results demonstrate that the proposed calibration method is simple to apply and can build up an accurate relationship between phase and depth data.  相似文献   

12.
Hirata S  Kurosawa MK 《Ultrasonics》2012,52(7):873-879
Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140 μm in the previous method to approximately within ±10 μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471 mm/s and ±13.87 μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9 mm/s.  相似文献   

13.
We report on a manifold advanced dual-wavelength digital holographic microscopy (DHM) configuration with a real-time measurement capability. The proposed configuration based on a polarizing separation scheme can be used for microscopic imaging polarimetry as well as dual wavelength digital holographic microscopy. In this paper, we show the feasibility of the proposed scheme by conducting the dual wavelength DHM experiments on a sample with a step height of 1.34 μm nominally. An averaging technique is treated and three-dimensional (3D) topographic measurements are presented. The results obtained by the proposed polarization separation based single shot DHM approach shows it can provide a real time solution for measuring 3D profile information of small objects with excellent accuracy.  相似文献   

14.
John F. Dobson 《Surface science》2011,605(17-18):1621-1632
The unusual electronic bandstructure of graphene is shown to give it several novel properties beyond the much-studied transport behavior. The electron density response of a graphene sheet is studied here in some detail. It is thereby shown that the attractive forces between graphene and distant objects can be calculated analytically, and exhibit unusual power laws as a function of their separation D. A brief review is also given of recent progress with high-level numerical many-electron calculations involving graphene interactions near the equilibrium binding distance D0.  相似文献   

15.
We propose a practical and simple measurement function of three dimensional (3D) length for endoscopy based on triangulation using manually pointed correspondences. This system is a novel combination of conventional methods. 3D length information is useful for many medical purposes and the burden of manual procedures can be reduced by focusing on length. We employed a novel combination for length measurement, that is, a monocular endoscope with an electromagnetic tracking sensor. The proposed method can measure the length without any equipment for light projection and changing the current procedure of endoscopy. Our method is made more robust and reliable than the automatic correspondence techniques through the best use of the expertise of endoscopists. We developed a prototype system and evaluated its accuracy. From experimental results, we showed that the proposed method can measure the 3D length of static objects accurately as long as the measurement geometry is suitable.  相似文献   

16.
Distance resolutions and noises are analyzed experimentally for long-range three-dimensional (3D) active imaging systems that have signal-to-noise ratios (SNRs) more optimal than 30:1. Findings indicate that the photon shot noise primarily determines the SNR. However, the active imaging method, which has a relatively low SNR, generates a relatively high distance resolution. To explain this phenomenon, a theory in which the distance resolution of 3D active imaging systems is determined by both the photon shot noise and the subinterval width is developed. Theoretical and experimental results differ by less than 4%.  相似文献   

17.
In this paper, digital holographic (DH) microscopy demonstrates its ability to perform a full characterization of nanofibers. The high resolution and magnification of the presented method to study the nanofibers are tested using standard MIL-STD-150A 1951 USAF resolution test target. In this investigation, aggregated natural cellulose nanowhisker fibers are positioned in the front of the microscopic objective using a 3D translation stage in the object arm of DH setup. The recorded off-axis holograms are refocused using the angular spectrum method. The reconstructed complex field is used to calculate optical phase and intensity distributions of the object at different reconstruction depths. A simple algorithm is used to define the focused image with suitable accuracy. The dimensions and orientation of the fibers can be evaluated from the optical field at different depths. Then, the shape and textures along the aggregated natural cellulose nanowhisker fiber can be presented in a 3D space.  相似文献   

18.
A major step toward the protein structure determination by nuclear magnetic resonance (NMR) spectroscopy is the assignment of multidimensional NMR signals that provide through-bond and through-space inter-atomic correlations. Ambiguities often occur during the assignment process due to resonance degeneracy, which challenges high resolution and larger size protein structure determination. Here, we present a method that will significantly improve the efficiency and accuracy of the NMR signal assignment. The method is based on a correlated accordion principle that, when incorporated into conventional three-dimensional (3D) heteronuclear NMR experiments, allows the retrieval of additional frequency correlation information at high resolution. We show that 3D spectra derived from this method are as effective as the impractical high resolution four-dimensional (4D) spectra with substantially reduced signal ambiguity as compared to their conventional counterparts. The approach promises increased accuracy and size of protein structures determined by NMR.  相似文献   

19.
基于螺旋相位调制的非相干全息点扩散函数研究   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了菲涅耳非相干相关全息(Fresnel incoherent correlation holography,FINCH)系统中纯相位空间光调制器(spatial light modulator,SLM)加载螺旋相位掩模时的点扩散函数.以氙灯为照明光源搭建了FINCH系统,电荷耦合器记录的点源全息图与点扩散函数模拟结果一致.采用该系统分别在SLM上加载双透镜掩模和螺旋相位调制双透镜掩模两种情况下对分辨率板和非染色洋葱细胞成像,给出了成像对比结果.结果表明:采用螺旋相位调制的FINCH系统可以在几乎不牺牲分辨率的情况下提高图像的边缘对比度;同样,对相位物体也可以实现图像的边缘提取和识别.该方法在实时监测活细胞的分裂、形变等方面具有重要应用前景.  相似文献   

20.
In this letter, we demonstrate sectional image reconstruction and three-dimensional microscopy of small particles. We demonstrate sectional image reconstruction and holographic methods to obtain 2D and 3D images of small particles. A single hologram is sufficient to obtain a section containing only the focused parts of the reconstructed image. One can obtain images of different plane sections of a specimen in addition to its 3D display. The reconstruction of a digital hologram is based on the plane-wave expansion of the diffracted wave fields using Fourier optics (this method is also known as the angular spectrum method). With this method, the object-to-hologram distance can be quite small because the minimum-distance requirement does not apply. Furthermore, numerical reconstruction of transparent objects by this method may be interesting for micro-structure measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号