首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1:1 synthesis of 2-quinolylhydrazine with 2,2′-pyridil yields the hydrazone 2,2′-pyridil-mono-(2-quinolylhydrazone). In either the Z or E isomeric configuration, the molecule can serve as a tridentate ligand. Equilibrium studies were carried out to determine the effects of pH and concentration of ligand and metal on the distribution of the extracted complex into methyl isobutyl ketone. Graphical analysis of the slopes of the plot of the logarithm of the distribution coefficient vs pH, log [ligand], and log [M(II)] will determine the stoichiometry and polymerization of the complex. In the extraction of Cu(II), Ni(II), and Co(II), there is a small change in log D, where D is the distribution coefficient, with pH indicating the presence of a weakly dissociated ligand. Ligand:metal (1:1) ion-paired species are extracted, each having three absorption peaks in the region 400-550 nm. While a spectrophotometrtc method for each element does not seem feasible due to simultaneous extraction and overlapping absorbances, an extractive-atomic absorption method for the analysis of 1.6 ppm of Cu(II) is presented. Excesses of 20-70 ppm Co(II), Zn(II), Cd(II), Cl, NO3, and SO42− do not interfere.  相似文献   

2.
Using 2D proton-coupled gHSQC pulse sequences in addition to 1D 15N NMR experiments of 15N labeled systems, 15N NMR chemical shifts of a range of transition metal amido and amine complexes were determined. Tungsten(II), ruthenium(II), platinum(IV) and copper(I) complexes with aniline and their anilido variants were studied and compared to free aniline, lithium anilido and anilinium tetrafluoroborate. Upon coordination of aniline to transition metals, upfield chemical shifts of 20–60 ppm were observed. Deprotonation of the amine complexes to form amido complexes resulted in downfield chemical shifts of 40–60 ppm for all of the complexes except for the tungsten d4 system. For the tungsten(II) complexes, the cationic aniline complex displayed a downfield shift of approximately 56 ppm relative to the neutral anilido complex. The change in chemical shift for amine to amido conversion is proposed to depend on the ability of the amido ligand to π-bond with the metal center, which influences the magnitude of the paramagnetic screening term.  相似文献   

3.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

4.
This paper presents examples of mixed-ligand Co(II), Cu(II), Ni(II) and Mn(II) complexes, with a distorted octahedral coordination geometry, with 2,2′-dipyridyl or 1,10-phenanthroline and phosphortriamide ligands. The complexes of the general type ML2·Lig (where M = Co(II), Cu(II), Ni(II), Mn(II); L = {Cl3C(O)NP(O)R2} (R = NHBz, NHCH2CHCH2, NEt2); Lig = 2,2′-dipyridyl or 1,10-phenanthroline) were synthesised and characterised by means of X-ray diffraction, IR and UV–Vis spectroscopy. The phosphortriamide ligands are coordinated via oxygen atoms of phosphoryl and carbonyl groups involved in six-membered metal cycles. The additional ligands 2,2′-dipyridyl or 1,10-phenanthroline are coordinated to the central atom, forming five-membered cycles.  相似文献   

5.
Cadmium(II) complexes of thiones and thiocyanate, [(>C=S)2Cd(SCN)2], have been prepared and characterized by IR and NMR spectroscopy. An upfield shift in the >C=S resonance of thiones in the 13C NMR and downfield shift in N–H resonance in 1H NMR are consistent with sulfur coordination to cadmium(II). The presence of ν(N–H) of thiones in IR spectra of the complexes indicates the thione forms of the ligands in the solid state; some contribution of the thiolate form was observed in one complex. The appearance of a band around 2100 cm?1 in IR and a resonance around 132 ppm in 13C NMR indicates the binding of thiocyanate to cadmium(II).  相似文献   

6.
本文用1H、31P和13C核磁共振谱研究了ATMP(氨基三甲叉膦酸,以简式H6L表示)及其顺磁性Co(Ⅱ)配合物。测定了不同Cco/CATMP摩尔比在不同pH值下的各向同性位移。定性地讨论顺磁性Co(Ⅱ)配合物在不同pH条件下的组成、电荷和空间构型变化对化学位移的影响。运用快速交换反应中化学位移与配合物浓度的关系,确定不同pH下的条件稳定常数。  相似文献   

7.
The Hg(II)/xylenol orange (XO) complex has been studied in the presence of the watersoluble alcohols methanol, ethanol, propanol, iso-propanol, ethylene glycol, and glycerol. Only one binary complex Hg(II)/XO = 1:2 is formed in a HCit-Na2HPO4 pH 6.6–6.8 buffer in a 25% EtOH medium. Hg(II) can be determined (0.16–3.0 ppm) with a molar absorptivity of 3.2 × 104 liter mol−1 cm−1.A reaction mechanism of chelation is suggested according to the experimental results. The proposed model is based on the assumption of a 1:11 intramolecular sigmatropics process allowed by the orbital symmetry, followed by an ion association with the cationic species of the solution. The constants of the reaction have been calculated and the study of the interferences and the role of strong electrolytes carried out.  相似文献   

8.
The interactions of the La(III) cations with three anions (X), nitrate, chloride and perchlorate, in aqueous solutions in the pH range 4.0–6.5, were studied by139La NMR spectroscopy. A single model, involving the formation of the contact ion-pair (inner-sphere complex) (LaX)2+ was successfully and quantitatively applied to the chemical shift and the transverse relaxation rate data. Both measurements gave values for the thermodynamic equilibrium constants of formation of (LaX)2+ (K th ) in good agreement (average K th =0.45±0.05; 0.15±0.09; 0.03±0.01, respectively for nitrate, chloride and perchlorate). The complexes are characterized by chemical shifts of –25, 22 and –3.1 ppm and by transverse relaxation rates of 11.2, 5 and 1.65 kHz respectively for nitrate, chloride and perchlorate. The139La quadrupolar relaxation rate is not controlled by the reorientational correlation time. This finding is discussed, and it is suggested that the very fast exchange of water molecules in the first coordination sphere of La(III) is responsible for the time fluctuation of the electric field gradient at the139La nucleus site.  相似文献   

9.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

10.
Effects of concentrations of ammonia (0.3–5.8 M) and supporting electrolytes (NaF, NaClO4; 0.1–0.5 M) on the kinetics of electroreduction of ammonia complexes of cobalt(II) at a dropping mercury electrode are studied. Most experiments are performed with low concentrations of cobalt(II) complexes (1 × 10–5 to 2 × 10–5 M) in the absence of a polarographic maximum. The dependence of the half-wave potential of the reversible cathodic wave pertaining to the reduction of ammonia complexes of cobalt(II) on the concentration of ammonia molecules is obtained. It is found from the dependence that, at ammonia concentrations of 0.5–2.6 M, the slow electrochemical stage involves predominantly complexes Co(NH3)2 2+. At higher ammonia concentrations, the stage involves complexes Co(NH3) k 2+ (k > 2), which form in preceding chemical stages from complexes Co(NH3) i 2+ (i = 3–6) that are predominant in solution. Values of the diffusion coefficients for complexes Co(NH3) i 2+, apparent transfer coefficients, and rate constant of the process of electroreduction of ammonia complexes of cobalt(II) are determined. The reasons for the complicating effect the insoluble products of reduction of cobalt(II) complexes have on the shape of polarographic waves are discussed.  相似文献   

11.
A transition metal complex as an electrochemical probe of a DNA sensor must have an applicable redox potential, high binding affinity and chemical stability. Some complexes with the dipyrido[3,2-a:2′,3′-c]phenazine (DPPZ) ligand have been reported to have high binding affinity for DNA. However, it was difficult to detect the targeted DNA electrochemically using these complexes because of the relatively high redox potential. In this work, a combination of bipyridine ligands with functional groups (---NH2, ---CH3 and ---COOH) and the DPPZ ligand were studied. The introduction of electron-donating groups was effective for controlling the redox potential of the DPPZ-type osmium complex. The [Os(DA-bpy)2DPPZ]2+ complex (DA-bpy; 4,4′-diamino-2,2′-bipyridine) had a lower half-wave potential (E1/2) of 147 mV (vs. Ag AgCl) and higher binding affinity with DNA {binding constant, K=3.1×107 M−1 in 10 mmol dm−3 Tris–HCl buffer with 50 mmol dm−3 NaCl (pH 7.76)} than those of other complexes. With the single stranded DNA (ssDNA) modified gold electrode, the hybridization signal (ΔI) of the [Os(DA-bpy)2DPPZ]2+ complex was linear in the concentration range of 1.0 pg ml−1–0.12 μg ml−1 for the targeted DNA with a regression coefficient of 0.999. The detection limit was 0.1 pg ml−1.  相似文献   

12.
Studies on the catalytic reduction of nitrite on carbon electrodes modified with Co(II) tetra-2,3-pyridinoporphyrazine (CoTppa, 1), N,N′,N′′,N′′′-tetramethyltetra-2,3-pyridinoporphyrazine ([CoTm-2,3-tppa]4+, 2) and Co(II) N,N′,N′′,N′′′-tetramethyltetra-3,4-pyridinoporphyrazine ([CoTm-3,4-tppa]4+, 3) are reported. There is a close correspondence between the proximity of the methyl groups to the porphyrazine ring and the catalytic activity of the porphyrazine complexes. Bulk electrolysis gave ammonia and hydroxylamine as some of the products. The catalytic activity of the cationic complex, 3, towards the detection of low concentrations of nitrite (<10−9 M) in water containing sodium sulfate, was compared with the activities of the anionic cobalt(II) tetrasulfophthalocyanine ([CoTSPc]4−, 4) and the mixed [CoIITm-3,4-tppa]4+·[CoTSPc]4− (5) complexes. Complex 5 showed the best catalytic activity of the three in that large currents were obtained for very low concentrations of nitrite.  相似文献   

13.
We have studied spectrophotometrically the Pseudopurpurin-Pd(II) complex in an ethanolic-water medium ¦Ethanolamine ¦optimum = 4 × 10−1M; λ = 670 nm; 20% H2O; stable for at least 4 hr; ¦Reagent¦optimum = 5 × 10−5M; stoichiometry 2:2; log K = 17.7. A new method for the spectrophotometric determination of Pd traces is proposed for concentrations between 0.30 and 2.40 ppm. The relative error and the interferences of the method have been investigated.  相似文献   

14.
The spectral features of the squarylium near-infrared (NIR) dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is λ=663 nm in methanol. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission wavelength of the dye in methanol is λem=670 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The Stern–Volmer quenching constant, KSV, was calculated from the Stern–Volmer plot to be KSV=2.70×107 M−1 for Co(II) ion. The KSV value for Fe(III) ion could not be established due to the non-linearity of the Stern–Volmer plot and the modified Stern–Volmer plot for this ion. The detection limit is 6.24×10−8 M for Fe(III) ion and 1.55×10−5 M for Co(III) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant, KS, of the metal–dye complex was calculated to be 3.14×106 M−1 for the Fe–dye complex and 2.64×105 M−1 for the Co–dye complex.  相似文献   

15.
Complexation in the Fe2+–Fe3+N-(carboxymethyl)aspartic acid (H3L) system in aqueous solutions was studied by pH- and redox-potentiometric titration at 25°C and at an ionic strength of 0.1 (KCl). Depending on the H3L concentration and pH, neutral, protonated, and hydroxo complexes of iron(III) can be formed in the solutions. The stability constants for all the detected complexes were calculated, and the distribution plots for the fractions of complexes vs. the solution pH were constructed.  相似文献   

16.
Tetrahedrally distorted copper(II) sparteine pseudohalide complexes having a CuN4 chromophore were prepared and characterized by various spectroscopic techniques and X-ray crystallography. Among them, the crystal structures of copper(II) isothiocyanate complexes with two sparteine epimers, (−)-l-sparteine (Sp) and (−)-α-isosparteine (α-Sp), were determined. The NSp–Cu–NSp plane in copper(II) (−)-l-sparteine isothiocyanate [Cu(Sp)(NCS)2] and copper(II) (−)-α-isosparteine isothiocyanate [Cu(α-Sp)(NCS)2] is twisted by 58.2(6)° and 52.2(9)°, respectively, from the NNCS–Cu–NNCS plane. Based on the values of the dihedral angles and tilted distances of these two complexes, the geometry around Cu(II) in Cu(α-Sp)(NCS)2 is more distorted from the perfect tetrahedron than that in Cu(Sp)(NCS)2. For copper(II) sparteine pseudohalide (NCS and N3) complexes having a CuN4 chromophore, the EPR and the optical spectral data were collected. The results of X-ray crystallography and ESR spectroscopy are in a good agreement with the assumption that the degree of distortion from planarity to tetrahedron will reduce the A|| value of four-coordinate copper(II) sparteine pseudohalide complexes.  相似文献   

17.
Using the pulse saturation method the spin-lattice relaxation rate T1−1 for Cu(II) in Zn(II)-bis(diethyl-diselenocarbamate) was measured in the temperature range 1.5 < T < 33 K. From the T-dependence of T1−1 the Debye temperature of the host crystal was obtained. The angular dependence of T1−1 as well as the influence of the hyperfine interaction on T1−1 are discussed.  相似文献   

18.
Study of the sulphosalicylate complexes of copper(II), nickel(II), cobalt(II) and uranyl(II) by means of cation-exchange resins.The conditional stability constants of the 1:1 complexes of the sulphosalicylate ions (L3-) with copper(II), nickel(II), cobalt(II) and uranyl ions have been determined in a sodium perchlorate solution (0.1 M) and at various pH values by a cation-exchange method based on Schubert's procedure. The limits of application of the method are discussed. The variation with pH of the conditional stability constants can be explained by the existence of the complexes: CuH2L, CuHL, CuL-; NiH2L+, NiHL, NiL-; CoHL, CoL-; UO2H2L+, UO2HL, UO2L-, UO2LOH2-. The stability constants of these complexes are reported. Distribution diagrams of the various complexes of each element with pH and total concentration of sulphosalicylate parameters are given.  相似文献   

19.
Four Schiff base ligands, salabza-H2 = N,N′-bis(salicylidene)-2-aminobenzylamine, were synthesized by condensation of one mole of 2-aminobenzylamine and two moles of salicylaldehyde and/or two moles of substituted salicylaldehyde (5-OMe, 5-Br, 5-NO2). All the four Schiff bases and their Mn(II), Co(II), Cu(II) and Zn(II) complexes are characterized by UV-Vis, FT-IR, 1H NMR spectroscopy, mass spectrometry and elemental analysis. The formation constants and the Gibbs free energies were measured spectrophotometrically for 1:1 complexes in methanol in constant ionic strength (I = 0.1 mol dm−3 NaClO4) and at 25°C. The data refinement was carried out with the SQUAD program. The trend of formation constants of H2L1 with M(II) follows the order: Mn(II) (3.97) < Zn(II) (4.30) < Co(II) (4.89) < Cu(II) (5.73)  相似文献   

20.
We studied the adsorption behavior of Cu(II) and Mn(II) on the surface of titanium dioxide over the pH range from 2.0 to 11.5. The titanium dioxide we used in these experiments was prepared by hydrolyzing TiCl4 and had a surface area of 113.7 m2 g−1. All suspensions, which were 9.04 × 10−3 M in NaClO4, contained 20 m2 liter−1 of oxide surface and divalent metal ion concentrations sufficient (at full adsorption from solution) to cover the available surface with one-half, one, and four layers of close-packed, hydrated ions. Both divalent ions began adsorption below titanium dioxide's isoelectric point (pH = 6.2). Cu2+ adsorption was accompanied by net OH uptake from solution and it was inferred that the titania surface also provided OH for Cu2+ adsorption. ESR spectra demonstrate the coexistence of two distinct forms adopted by these metal ions on the surface. A portion of the adsorbed metal ions occupies sites magnetically isolated one from another, as evidenced by the paramagnetic behavior of this form. The majority of the metal ions, however, exist in hydrous-metal-ion clusters in which spin-exchange coupling of the electron dipoles determines the magnetic behavior. Electrophoretic mobility measurements indicate that ions adsorbed at isolated sites exert a stronger influence on the electrophoretically measured charge of the suspension particles than ions in clusters. Even though these experiments were performed in the absence of oxygen, we observed the oxidation of a limited amount of the Mn(II) on the surface as low as pH = 5. Presumably this occurs as a result of electron transfer between photo-induced electron holes and Mn(II) on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号