首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shewanella oneidensis MR‐1 gains energy by extracellular electron transfer to solid surfaces. They employ c‐type cytochromes in two Mtr transmembrane complexes, forming a multiheme wire for electron transport across the cellular outer membrane. We investigated electron‐ and hole‐transfer mechanisms in the external terminal of the two complexes, MtrC and MtrF. Comparison of computed redox potentials with previous voltammetry experiments in distinct environments (isolated and electrode‐bound conditions of PFV or in vivo) suggests that these systems function in different regimes depending on the environment. Analysis of redox potential shifts in different regimes indicates strong coupling between the hemes via an interplay between direct Coulomb and indirect interactions through local structural reorganization. The latter results in the screening of Coulomb interactions and explains poor correlation of the strength of the heme‐to‐heme interactions with the distance between the hemes.  相似文献   

2.
When grown on the surface of an anode electrode, Geobacter sulfurreducens forms a multi‐cell thick biofilm in which all cells appear to couple the oxidation of acetate with electron transport to the anode, which serves as the terminal metabolic electron acceptor. Just how electrons are transported through such a biofilm from cells to the underlying anode surface over distances that can exceed 20 microns remains unresolved. Current evidence suggests it may occur by electron hopping through a proposed network of redox cofactors composed of immobile outer membrane and/or extracellular multi‐heme c‐type cytochromes. In the present work, we perform a spatially resolved confocal resonant Raman (CRR) microscopic analysis to investigate anode‐grown Geobacter biofilms. The results confirm the presence of an intra‐biofilm redox gradient whereby the probability that a heme is in the reduced state increases with increasing distance from the anode surface. Such a gradient is required to drive electron transport toward the anode surface by electron hopping via cytochromes. The results also indicate that at open circuit, when electrons are expected to accumulate in redox cofactors involved in electron transport due to the inability of the anode to accept electrons, nearly all c‐type cytochrome hemes detected in the biofilm are oxidized. The same outcome occurs when a comparable potential to that measured at open circuit (?0.30 V vs. SHE) is applied to the anode, whereas nearly all hemes are reduced when an exceedingly negative potential (?0.50 V vs. SHE) is applied to the anode. These results suggest that nearly all c‐type cytochrome hemes detected in the biofilm can be electrochemically accessed by the electrode, but most have oxidation potentials too negative to transport electrons originating from acetate metabolism. The results also reveal a lateral heterogeneity (xy dimensions) in the type of c‐type cytochromes within the biofilm that may affect electron transport to the electrode.  相似文献   

3.
Heavily doped cadmium tin oxide (CTO) film electrodes were developed for fast electron exchange with redox proteins. The metal oxide films showed nearly reversible electron transfer for the [2Fe–2S] proteins spinach ferredoxin (Sp fd) and putidaredoxin (Pdx), and the well-studied heme protein horse heart cytochrome c. These represent a family of proteins that are of comparable size, but vary significantly in overall charge, formal redox potential, and type of metal center. The unmediated electron exchange was achieved through variation of metal oxide film synthesis parameters that led to an increase of the charge carrier concentration up to the levels typical for degenerate semiconductors. In addition, the flat band potential of the films was shifted close to or more positive of the formal redox potentials of proteins such that the semiconductor electrodes would be utilized in an accumulation mode. The rates and sustainability of electron transfer for the two ferredoxins obtained on these cadmium tin oxide electrodes are as high or higher than previously reported.  相似文献   

4.
The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understanding charge transport mechanisms and to the design of bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Herein, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi level and nanometric position of the ECSTM probe in order to study electron transport in individual photosystem I (PSI) complexes. Current–distance measurements at different potentiostatic conditions indicate that PSI supports long‐distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.  相似文献   

5.
IntroductionMicrosomalcytochromeb5(Cytb5)isamemberofcytochromeb5family ,anditservesasanelectroncarrierinaseriesofelectron transferprocessesinbiologicalsys tems .1 3 Cytb5isamembraneproteinwithMr~ 16kDa ,consistingoftwodomains ,onehydrophobicdomainwhichanchorsth…  相似文献   

6.
The electrochemistry and electrocatalysis of a number of heme proteins entrapped in agarose hydrogel films in the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) have been investigated. UV-vis and FTIR spectroscopy show that the heme proteins retain their native structure in agarose film. The uniform distribution of hemoglobin in agarose-dimethylformamide film was demonstrated by atomic force microscopy. Cyclic voltammetry shows that direct electron transfer between the heme proteins and glassy carbon electrode is quasi-reversible in [bmim][PF(6)]. The redox potentials for hemoglobin, myoglobin, horseradish peroxidase, cytochrome c, and catalase were found to be more negative than those in aqueous solution. The charge-transfer coefficient and the apparent electron-transfer rate constant for these heme proteins in [bmim][PF(6)] were calculated from the peak-to-peak separation as a function of scan rate. The heme proteins catalyze the electroreduction of trichloroacetic acid and tert-butyl hydroperoxide in [bmim][PF(6)]. The kinetic parameter I(max) (maximum current at saturation concentration of substrate) and the apparent K(m) (Michaelis-Menten constant) for the electrocatalytic reactions were evaluated.  相似文献   

7.
Computational modeling offers a new insight about the electron transfer pathway in heme peroxidases. Available crystal structures have revealed an intriguing arrangement of the heme propionate side chains in heme-heme and heme-substrate complexes. By means of mixed quantum mechanical/molecular mechanics calculations, we study the involvement of these propionate groups into the substrate oxidation in ascorbate peroxidase and into the heme to heme electron transfer in bacterial cytochrome c peroxidase. By selectively turning on/off different quantum regions, we obtain the electron transfer pathway which directly involves the porphyrin ring and the heme propionates. Furthermore, in ascorbate peroxidase the presence of the substrate appears to be crucial for the activation of the electron transfer channel. The results might represent a general motif for electron transfer from/to the heme group and change our view for the propionate side chains as simple electrostatic binding anchors. We name the new mechanism "the propionate e-pathway".  相似文献   

8.
The acceleration of electron transfer (ET) rates in redox proteins relative to aqueous solutes can be attributed to the protein's ability to reduce the nuclear response or reorganization upon ET, while maintaining sufficiently high electronic coupling. Quantitative predictions of reorganization free energy remain a challenge, both experimentally and computationally. Using density functional calculations and molecular dynamics simulation with an electronically polarizable force field, we report reorganization free energies for intraprotein ET in four heme-containing ET proteins that differ in their protein fold, hydrophilicity, and solvent accessibility of the electron-accepting group. The reorganization free energies for ET from the heme cofactors of cytochrome c and b(5) to solvent exposed Ru-complexes docked to histidine residues at the surface of these proteins fall within a narrow range of 1.2-1.3 eV. Reorganization free energy is significantly lowered in a designed 4-helix bundle protein where both redox active cofactors are protected from the solvent. For all ET reactions investigated, the major components of reorganization are the solvent and the protein, with the solvent contributing close to or more than 50% of the total. In three out of four proteins, the protein reorganization free energy can be viewed as a collective effect including many residues, each of which contributing a small fraction. These results have important implications for the design of artificial electron transport proteins. They suggest that reorganization free energy may in general not be effectively controlled by single point mutations, but to a large extent by the degree of solvent exposure of the ionizable cofactors.  相似文献   

9.
In this work we present the separation of FTIR difference signals induced by electron transfer to/from the redox centers of the cytochrome c oxidase from P. denitrificans and compare electrochemically induced FTIR difference spectra with those induced by CO photolysis. FTIR difference spectra of rebinding of CO to the half reduced (mixed valence) form of the cytochrome c oxidase after photolysis reflect the conformational changes induced by the rebinding of CO and by electron transfer reactions from heme a3 to heme a and further on to CUA. During this process, heme a3 (and CUB) are oxidized, whereas heme a and CuA are reduced. By subtracting these difference spectra from an electrochemically induced FTIR difference spectrum, where all four cofactors are reduced, the contributions for heme a3 (and CuB) could be separated. Correspondingly, the spectral contributions of heme a and CuA have been separated. The comparison of these spectra with the spectra calculated for the hemes on the basis of their redox dependent changes previously published in Hellwig et al., (Biochemistry 38, (1999) 1685-1694) show a high degree of similarity, except for additional signals coupled to the reorganization of the binuclear center upon CO rebinding. The separated spectra clearly show that the signals attributed to Glu278, an amino acid discussed to be crucial for proton pumping, is coupled to electron transfer to/from heme a and the binuclear heme a3-CuB center.  相似文献   

10.
The redox properties of horse and yeast cytochrome c electrostatically immobilized on carboxylic acid-terminated self-assembled monolayers (SAMs) have been determined over a broad pH range (pH 3.5-8) in the absence and presence of nitric oxide. Below pH 6, both proteins exhibit comparable midpoint potentials, coverages, and electron-transfer rate constants, which suggests that they are adsorbed on the SAM in a similar fashion. Above pH 6, a sharp decrease in electron-transfer rate constants is observed for immobilized yeast cytochrome c, which is indicative of a change in the electron tunneling pathway between the heme and the electrode and hence suggests that the protein reorients on the surface. Such a decrease is not observed for horse cytochrome c and therefore must be related to the specific charge distribution on yeast cytochrome c. Apart from the charge distribution on the protein, the reorientation also seems to be related to the charge on the SAM surface. The presence of nitric oxide causes a decrease in electron-transfer rate constants of both yeast and horse cytochrome c at low pH. This is probably due to the fact that nitric oxide induces a conformational change of the protein and also changes the reorganization energy for electron transfer.  相似文献   

11.
12.
Electrostatic interactions and other weak interactions between amino acid side chains on protein surfaces play important roles in molecular recognition, and the mechanism of their intermolecular interactions has gained much interest. We established that charged peptides are useful for investigating the molecular recognition character of proteins and their molecular interaction induced structural changes. Positively charged lysine peptides competitively inhibited electron transfer from reduced cytochrome f (cyt f or cytochrome c (cyt c) to oxidized plastocyanin (PC), due to neutralization of the negatively charged site of PC by formation of PC-lysine peptide complexes. Lysine peptides also inhibited electron transfer from cyt c to cytochrome c peroxidase. Likewise, negatively charged aspartic acid peptides interacted with the positively charged sites of cytfand cyt c, and competitively inhibited electron transfer from reduced cytfor cyt c to oxidized PC and from [Fe(CN)6]4- to oxidized cyt c. Changes in the geometry and a shift to a higher redox potential of the active site Cu of PC on oligolysine binding were detected by spectroscopic and electrochemical measurements, owing to the absence of absorption in the visible region for lysine peptides. Structural and redox potential changes were also observed for cyt f and cyt c by interaction with aspartic acid peptides.  相似文献   

13.
14.
Cytochrome c functions as an electron carrier in the mitochondrial electron-transport chain using the Fe(II)-Fe(III) redox couple of a covalently attached heme prosthetic group, and it has served as a paradigm for both biological redox activity and protein folding. On the basis of a wide variety of biophysical techniques, it has been suggested that the protein is more flexible in the oxidized state than in the reduced state, which has led to speculation that it is the dynamics of the protein that has been evolved to control the cofactor's redox properties. To test this hypothesis, we incorporated carbon-deuterium bonds throughout cytochrome c and characterized their absorption frequencies and line widths using IR spectroscopy. The absorption frequencies of several residues on the proximal side of the heme show redox-dependent changes, but none show changes in line width, implying that the flexibility of the oxidized and reduced proteins is not different. However, the spectra demonstrate that folded protein is in equilibrium with a surprisingly large amount of locally unfolded protein, which increases with oxidation for residues localized to the proximal side of the heme. The data suggest that while the oxidized protein is not more flexible than the reduced protein, it is more locally unfolded. Local unfolding of cytochrome c might be one mechanism whereby the protein evolved to control electron transfer.  相似文献   

15.
《Electroanalysis》2005,17(9):762-768
The direct electrochemistry of cytochrome c (cyt‐c) has been investigated on exfoliated graphite (EG) electrodes. The as‐polished and roughened (using SiC emery sheet) EG surfaces are inactive for the direct electron transfer. However, when the EG electrode was sonicated before the experiment, a pair of redox waves were obtained for freely diffusing cyt‐c in the solution phase. The formal potential was found to be 0.01 V (vs. SCE) in 0.1 M phosphate buffer at a pH of 7.1. The electrochemical response for the adsorbed cyt‐c on sonicated EG electrodes, which is shown to have carbonyl functional groups on its surface, shows nearly reversible voltammograms in the same electrolyte. However, the formal potential in the adsorbed state is more negative than that observed for the solution phase cyt‐c. A structure based on an open heme conformation proposed by Hildebrandt and Stockburger is probably present on the EG surface. It is suggested that the electrochemistry at the EG electrode is essentially governed by favourable electrostatic interactions.  相似文献   

16.
Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.  相似文献   

17.
Electrons are transferred over long distances along chains of FeS clusters in hydrogenases, mitochondrial complexes, and many other respiratory enzymes. It is usually presumed that electron transfer is fast in these systems, despite the fact that there has been no direct measurement of rates of FeS-to-FeS electron transfer in any respiratory enzyme. In this context, we propose and apply to NiFe hydrogenase an original strategy that consists of quantitatively interpreting the variations of steady-state activity that result from changing the nature of the FeS clusters which connect the active site to the redox partner, and/or the nature of the redox partner. Rates of intra- and intermolecular electron transfer are deduced from such large data sets. The mutation-induced variations of electron transfer rates cannot be explained by changes in intercenter distances and reduction potentials. This establishes that FeS-to-FeS rate constants are extremely sensitive to the nature and coordination of the centers.  相似文献   

18.
Cytochrome c oxidase (CcO), known as complex IV of the electron transport chain, plays several important roles in aerobic cellular respiration. Electrons transferred from cytochrome c to CcO's catalytic site reduce molecular oxygen and produce a water molecule. These electron transfers also drive active proton pumping from the matrix (N-side) to intermembrane region (P-side) in mitochondria; the resultant proton gradient activates ATP synthase to produce ATP from ADP. Although the existence of the coupling between the electron transfer and the proton transport (PT) is established experimentally, its mechanism is not yet fully understood at the molecular level. In this work, it is shown why the reduction of heme a is essential for proton pumping. This is demonstrated via novel reactive molecular dynamics (MD) simulations that can describe the Grotthuss shuttling associated with the PT as well as the dynamic delocalization of the excess proton electronic charge defect. Moreover, the "valve" role of the Glu242 residue (bovine CcO notation) and the gate role of d-propionate of heme a(3) (PRDa3) in the explicit PT are explicitly demonstrated for the first time. These results provide conclusive evidence for the CcO proton transporting mechanism inferred from experiments, while deepening the molecular level understanding of the CcO proton switch.  相似文献   

19.
We generated atomic coordinates of an artificial protein that was recently synthesized to model the central part of the native cytochrome b (Cb) subunit consisting of a four-helix bundle with two hemes. Since no X-ray structure is available, the structural elements of the artificial Cb were assembled from scratch using all known chemical and structural information available and avoiding strain as much as possible. Molecular dynamics (MD) simulations applied to this model protein exhibited root-mean-square deviations as small as those obtained from MD simulations starting with the crystal structure of the native Cb subunit. This demonstrates that the modeled structure of the artificial Cb is relatively rigid and strain-free. The model structure of the artificial Cb was used to determine the redox potentials of the two hemes by calculating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation (LPBE). The calculated redox potentials agree within 20 meV with the experimentally measured values. The dependence of the redox potentials of the hemes on the protein environment was analyzed. Accordingly, the total shift in the redox potentials is mainly due to the low dielectric medium of the protein, the protein backbone charges, and the salt bridges formed between the arginines and the propionic acid groups of the hemes. The difference in the shift of the redox potentials is due to the interactions with the hydrophilic side chains and the salt bridges formed with the propionic acids of the hemes. For comparison and to test the computational procedure, the redox potentials of the two hemes in the native Cb from the cytochrome bc(1) (Cbc(1)) complex were also calculated. Also in this case the computed redox potentials agree well with experiments.  相似文献   

20.
This study shows that regulating the electron flow to the heme of human cytochrome P450 CYP3A4, using artificial redox chains, can significantly enhance its coupling efficiency and catalytic activity at electrode surfaces. The human CYP3A4 was fused at the genetic level either to the reductase domain of CYP102A1 (BMR) to create the CYP3A4/BMR or to Desulfovibrio vulgaris flavodoxin (FLD) to create the CYP3A4/FLD. Direct electrochemistry of the CYP3A4, CYP3A4/BMR and CYP3A4/FLD on glassy carbon and gold electrodes showed that the BMR and FLD flavo-proteins reduced the electron transfer rate to the CYP3A4 heme. Electrocatalysis resulted in appreciably higher product formation with the immobilized CYP3A4/BMR and CYP3A4/FLD on both surfaces due to an increased coupling efficiency. Rotating disk electrode studies and quantification of hydrogen peroxide were consistent with the proposed mechanism of a longer lived iron-peroxy species in the immobilized CYP3A4/BMR and CYP3A4/FLD. The approaches in this study provide a better understanding of cytochrome P450 uncoupling at electrode surfaces and aids in the construction of improved cytochrome P450 biosensors and bioelectrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号