首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vision begins when light is absorbed by visual pigments. It is commonly believed that the absorption spectra of visual pigments are modulated by interactions between the retinal and amino acids within or near 4.5 angstroms of the retinal in the transmembrane (TM) segments. However, this dogma has not been rigorously tested. In this study, we show that the retinal-opsin interactions extend well beyond the retinal binding pocket. We found that, although it is positioned outside of TM segments, the C-terminus of the rhodopsin in the rockfish longspine thornyhead (Sebastolobus altivelis) modulates its lambda(max) by interacting mainly with the last TM segment. Our results illustrate how amino acids in the C-terminus are likely to interact with the retinal. We anticipate our analyses to be a starting point for viewing the spectral tuning of visual pigments as interactions between the retinal and key amino acids that are distributed throughout the entire pigment.  相似文献   

2.
We have investigated geometries and excitation energies of bovine rhodopsin and some of its mutants by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in ONIOM scheme, employing B3LYP and BLYP density functionals as well as DFTB method for the QM part and AMBER force field for the MM part. QM/MM geometries of the protonated Schiff-base 11- cis-retinal with B3LYP and DFTB are very similar to each other. TD-B3LYP/MM excitation energy calculations reproduce the experimental absorption maximum of 500 nm in the presence of native rhodopsin environment and predict spectral shifts due to mutations within 10 nm, whereas TD-BLYP/MM excitation energies have red-shift error of at least 50 nm. In the wild-type rhodopsin, Glu113 shifts the first excitation energy to blue and accounts for most of the shift found. Other amino acids individually contribute to the first excitation energy but their net effect is small. The electronic polarization effect is essential for reproducing experimental bond length alternation along the polyene chain in protonated Schiff-base retinal, which correlates with the computed first excitation energy. It also corrects the excitation energies and spectral shifts in mutants, more effectively for deprotonated Schiff-base retinal than for the protonated form. The protonation state and conformation of mutated residues affect electronic spectrum significantly. The present QM/MM calculations estimate not only the experimental excitation energies but also the source of spectral shifts in mutants.  相似文献   

3.
We investigated the molecular mechanism of a rather large red shift of 31 nm in a human red pigment compared with a human green pigment. In this analysis, we paid special attention to the phenomenon of nonadditivity of spectral shifts due to substitution of the key amino acids (OH-bearing amino acids) and the phenomenon of cooperativity by which the spectral shifts due to substitution of the key amino acids in the protein environment of red pigment are about 1.5 times larger than that in the protein environment of green pigment. The analysis was made by using a model of three active sites on which the key amino acids are located and four effective sites by which the effect of the key amino acids is modified. As a result, we found that the interaction between the active sites that occurs through the repolarization of the chromophore induced by the key amino acid is essential for the nonadditivity phenomenon. We also found that the interaction between the active site and the effective site plays a major role in the cooperativity phenomenon. More directly, we say that the highly polarizable property of the chromophore is the origin of the rather large red shift in red pigment. Based on these analyses, we conclude that the interaction between the polarizable chromophore and the protein moiety has the capability of producing a significant spectral shift, at least 1000 cm-1, even by substitution of moderate polar residues of the OH-bearing amino acids.  相似文献   

4.
The human red and green cone pigments differ at either 15 or 16 amino acids, depending upon which polymorphic variants are compared. Seven of these amino acid differences involve the introduction or removal of a hydroxyl group. One of these differences, a substitution of alanine for senne at position 80, was found previously to produce a 5 nm blue shift. To determine the role of the remaining six hydroxyl group differences in tuning the absorption spectra of the human red and green pigments, we have studied six site-directed mutants in which single amino acids from the green pigment have been substituted for the corresponding residues in the red pigment. Blue shifts of 7 and 14 nm were observed upon substitution of phenylalanine for tyrosine at position 277 and alanine for threonine at position 285, respectively. Single substitutions at positions 65, 230, 233, and 309 produced spectral shifts of 1 nm or less. These data are in good agreement with a model based upon sequence comparisons among primate pigments and with the properties of site-directed mutants of bovine rhodopsin. Nonadditive effects observed in comparing the absorption spectra of red-green hybrid pigments remain to be explained.  相似文献   

5.
Spectral tuning of shortwave-sensitive visual pigments in vertebrates   总被引:4,自引:0,他引:4  
Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows some of the largest shifts in lambda(max), with values ranging in different species from 390-435 nm in the violet region of the spectrum to < 360 nm in the ultraviolet. Phylogenetic evidence indicates that the ancestral pigment most probably had a lambda(max) in the UV and that shifts between violet and UV have occurred many times during evolution. In violet-sensitive (VS) pigments, the Schiff base is protonated whereas in UV-sensitive (UVS) pigments, it is almost certainly unprotonated. The generation of VS pigments in amphibia, birds and mammals from ancestral UVS pigments must involve therefore the stabilization of protonation. Similarly, stabilization must be lost in the evolution of avian UVS pigments from a VS ancestral pigment. The key residues in the opsin protein for these shifts are at sites 86 and 90, both adjacent to the Schiff base and the counterion at Glu113. In this review, the various molecular mechanisms for the UV and violet shifts in the different vertebrate groups are presented and the changes in the opsin protein that are responsible for the spectral shifts are discussed in the context of the structural model of bovine rhodopsin.  相似文献   

6.
7.
Molecular dynamics simulations and combined quantum mechanical and molecular mechanical calculations have been performed to investigate the mechanism of the opsin shift and spectral tuning in rhodopsin. A red shift of -980 cm(-1) was estimated in the transfer of the chromophore from methanol solution environment to the protonated Schiff base (PSB)-binding site of the opsin. The conformational change from a 6-s-cis-all-trans configuration in solution to the 6-s-cis-11-cis conformer contributes additional -200 cm(-1), and the remaining effects were attributed to dispersion interactions with the aromatic residues in the binding site. An opsin shift of 2100 cm(-1) was obtained, in reasonable accord with experiment (2730 cm(-1)). Dynamics simulations revealed that the 6-s-cis bond can occupy two main conformations for the β-ionone ring, resulting in a weighted average dihedral angle of about -50°, which may be compared with the experimental estimate of -28° from solid-state NMR and Raman data. We investigated a series of four single mutations, including E113D, A292S, T118A, and A269T, which are located near the PSB, along the polyene chain of retinal and close to the ionone ring. The computational results on absorption energy shift provided insights into the mechanism of spectral tuning, which involves all means of electronic structural effects, including the stabilization or destabilization of either the ground or the electronically excited state of the retinal PSB.  相似文献   

8.
Various computational approaches, using molecular mechanics (Amber), semiempirical (AM1), density functional (B3LYP), and various ONIOM methods, have been comparatively investigated for the structure of Escherichia coli NifS CsdB protein. The structure of the entire monomer containing 407 amino acid residues and 579 surrounding water molecules has been optimized. The full geometry optimization in the "active site-only" approach (including only active site atoms) has been found to give the largest root-mean-square (RMS) deviation from the X-ray structure; a much better agreement has been achieved by keeping the atoms leading to the backbones of some amino acids frozen in their positions in the X-ray structure. The best agreement has been attained by including the surrounding protein in the calculations using the two-layer ONIOM (B3LYP:Amber) approach. The results presented in this study conclusively demonstrate the importance of the protein/active-site interaction on the active-site structure of the enzyme. The present theoretical study represents the largest system studied at the ONIOM level to date, containing 7992 atoms, including 84 atoms in the QM region and rest in the MM region.  相似文献   

9.
ON THE MECHANISM OF WAVELENGTH REGULATION IN VISUAL PIGMENTS   总被引:9,自引:0,他引:9  
Abstract— The contributions of different factors that might be responsible for the 500 nm absorption maximum of bovine rhodopsin are evaluated in detail. These include: (1) electrostatic interactions between the chromophore and a charged amino acid on the apoprotein; (2) exciton interactions with aromatic amino acids; (3) twisting about single bonds which have considerable double bond character; (4) weak interactions between the Schiff base and a putative counter-ion. Analysis of these mechanisms in terms of theoretical and experimental results suggests that(2–4) are all capable of contributing to the protein induced spectral shifts. However, the "external point charge" model proposed previously, i.e. mechanism (1), appears to provide the crucial interaction. In this paper, the theoretical basis for this model is discussed in detail. The model is briefly evaluated in light of the amino-acid sequence of bovine rhodopsin and possible implications for other visual pigments are considered.  相似文献   

10.
Archaerhodopsin‐3 (AR3) is a member of the microbial rhodopsin family of hepta‐helical transmembrane proteins, containing a covalently bound molecule of all‐trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light‐driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all‐trans retinal A1 on the spectral properties and proton‐pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3‐methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3‐methylamino‐16‐nor‐1,2,3,4‐didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near‐infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near‐infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near‐infrared exploitation as fluorescent voltage‐gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy‐based applications.  相似文献   

11.
12.
We discuss in this article, the applicability of hybrid techniques [especially the our‐own N‐layered integrated molecular orbital and molecular mechanics (ONIOM) method] to weak chemical interactions in large systems, such as the interaction of cyclin‐dependant kinases, CDK4, and CDK2, with a specific ligand (2PU) showing selectivity for CDK4. Our results show that the energies from the ONIOM calculations perfectly match our former molecular dynamics results, both for determining the amino acids which have strongest interactions with the ligand and for explaining the selectivity of 2PU towards CDK4, as compared with CDK2. We show that the ONIOM method is a good candidate for studying such interactions in large systems, even though there are still some technical and theoretical problems to solve. The calculation details will be presented together with the methodology we devised for using the ONIOM approach in such a context. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
By comparing the results from a hybrid quantum mechanics/molecular mechanics method (SORCI+Q//B3LYP/6-31G*:Amber) between vertebrate (bovine) and invertebrate (squid) visual pigments, the mechanism of molecular rearrangements, energy storage, and origin of the bathochromic shift accompanying the transformation of rhodopsin to bathorhodopsin have been evaluated. The analysis reveals that, in the presence of an unrelaxed binding site, bathorhodopsin was found to carry almost 27 kcal/mol energy in both visual pigments and absorb (λ(max)) at 528 nm in bovine and 554 nm in squid. However, when the residues within 4.0 ? radius of the retinal are relaxed during the isomerization event, almost ~16 kcal/mol energy is lost in squid compared to only ~8 kcal/mol in bovine. Loss of a larger amount of energy in squid is attributed to the presence of a flexible binding site compared to a rigid binding site in bovine. Structure of the squid bathorhodopsin is characterized by formation of a direct H-bond between the Schiff base and Asn87.  相似文献   

14.
We consider a spectrum-like two-dimensional graphical representation of proteins based on a reduced protein model in which 20 amino acids are grouped into five classes. This particular grouping of amino acids was suggested by Riddle and co-workers in 1997. The graphical representation is based on depicting sequentially the amino acids on five horizontal lines at equal separations. One-letter codes, B, O, U, X and Y, to which numerical values 1 to 5 have been assigned, are suggested as labels for the fictional amino acids that represent all the amino acids within each group. The approach is illustrated on ND6 proteins of eight species having from 168 to 175 amino acids. While visual inspection of the novel spectral graphical representations of proteins may reveal local similarities and dissimilarities of protein sequences, arithmetic manipulations of spectra offer an elegant route to graphic visualization of the degree of similarity for selected pairs of proteins.  相似文献   

15.
The vertebrate retina contains two kinds of visual cells: rods, responsible for twilight (scotopic) vision (black and white discrimination); and cones, responsible for daylight (photopic) vision (color discrimination). Here we attempt to explain some of their functional differences and similarities in terms of their visual pigments. In the chicken retina there are four types of single cones and a double cone; each of the single cones has its own characteristic oil droplet (red, orange, blue, or colorless) and the double cone is composed of a set of principal and accessory members, the former of which has a green-colored oil droplet. Iodopsin, the chicken red-sensitive cone visual pigment, is located at outer segments of both the red single cones and the double cones, while the other single cones and the rod contain their own visual pigments with different absorption spectra. The diversity in absorption spectra among these visual pigments is caused by the difference in interaction between chromophore (11-cis retinal) and protein moiety (opsin). However, the chromophore-binding pocket in iodopsin is similar to that in rhodopsin. The difference in absorption maxima between both pigments could be explained by the difference in distances between the protonated Schiff-bases at the chromophore-binding site and their counter ions in iodopsin and rhodopsin. Furthermore, iodopsin has a unique chloride-binding site whose chloride ion serves for the red-shift of the absorption maximum of iodopsin. Visual pigment bleaches upon absorption of light through several intermediates and finally dissociates into all-trans retinal and opsin. That the sensitivity of cones is lower than rods cannot be explained by the relative photosensitivity of iodopsin to rhodopsin, but may be understood to some extent by the short lifetime of an enzymatically active intermediate (corresponding to metarhodopsin II) produced in the photobleaching process of iodopsin. The rapid formation and decay of the meta II-intermediate of iodopsin compared with metarhodopsin II are not contradictory to the rapid generation and recovery of cone receptor potential compared with rod receptor potential. The rapid recovery of the cone receptor potential may be due to a more effective shutoff mechanism of the visual excitation, including the phosphorylation of iodopsin. The rapid dark adaptation of cones compared with rods has been explained by the rapid regeneration of iodopsin from 11-cis retinal and opsin. One of the reasons for the rapid regeneration and susceptibility to chemicals of iodopsin compared with rhodopsin may be a unique structure near the chromophore-binding site of iodopsin.  相似文献   

16.
The changes in the electronic excitation energy arising from molecular structural displacement induced by external electric field (so-called vibrational polarization) are examined theoretically for the protonated and neutral 11-cis retinal Schiff bases. It is shown that the magnitude of the field-induced structural displacement is significantly large for the protonated species, so that the change in the electronic excitation energy arising from this structural displacement is of the same order of magnitude as that arising from the direct effect of electric field on the electronic wave function. These two effects contribute additively to the field-induced spectral shift. The intensity-carrying mode (ICM) theory is employed to extract a single vibrational mode (called primary infrared ICM) that is most important for the field-induced structural displacement. A simple one-dimensional model is constructed, and the extent to which we can interpret the field-induced spectral shift by such a model is examined. In the case of the neutral species, only a small change in the electronic excitation energy is induced by external electric field, mainly because the vibrational polarizability of this species is small. The meaning of these results in the spectral tuning of visual pigments is discussed.  相似文献   

17.
The visual pigment rhodopsin presents an astonishing photochemical performance. It exhibits an unprecedented quantum yield (0.67) in a highly defined and ultrafast photoisomerization process. This triggers the conformational changes leading to the active state Meta II of this G protein-coupled receptor. The responsible ligand, retinal, is covalently bound to Lys-296 of the protein in a protonated Schiff base. The resulting positive charge delocalization over the terminal part of the polyene chain of retinal creates a conjugation defect that upon photoexcitation moves to the opposite end of the polyene. Shortening the polyene as in 5,6-dihydro- or 7,8-dihydro analogues might facilitate photoisomerization of a 9-Z and an 11-Z bond. Here we describe pigment analogues generated with bovine opsin and 11-Z 7,8-dihydro retinal or 9-Z 7,8-dihydro retinal. Both isomers readily generate photosensitive pigments that differ remarkably in spectral properties from the native pigments. In addition, in spite of the more flexible 7,8 single bond, both analogue pigments exhibit strikingly efficient photoisomerization while largely maintaining the activity toward the G-protein. These results bear upon the activation of ligand-gated signal transducers such as G protein-coupled receptors.  相似文献   

18.
A NEW FACET IN RHODOPSIN PHOTOCHEMISTRY   总被引:4,自引:0,他引:4  
Abstract— A structure is proposed for the prosthetic group of the visual pigments rhodopsin, prelumirhodopsin (bathorhodopsin) and lumirhodopsin. The intrinsic photochemical step in this model is tautomerization of the prosthetic group of rhodopsin to a hexaeneamine retrotautomer with an exomethylene group for prelumirhodopsin. Based on the proposed structures, molecular orbital calculations were carried out; the absorption maxima calculated snowed the same trends as the Λmax values observed. An exact fit was not obtained because many interactions had to be neglected. Essential information of the laser Raman resonance spectrum of prelumirhodopsin can be interpreted based on the structures proposed by our model.
The model elucidates why some retinal derivates can and others cannot form visual pigments with opsin and visual pigments having vastly differing absorption maxima yet employ the same mechanism for their photoreaction.  相似文献   

19.
Absorbance difference spectra were recorded from 20 ns to 1 micros after 20 degrees C photoexcitation of artificial visual pigments derived either from 5-demethylretinal or from a mesityl analogue of retinal. Both pigments produced an early photointermediate similar to bovine bathorhodopsin (Batho). In both cases the Batho analogue decayed to a lumirhodopsin (Lumi) analogue via a blue-shifted intermediate, BSI, which formed an equilibrium with the Batho analogue. The stability of 5-demethyl Batho, even though the C8-hydrogen of the polyene chain cannot interact with a ring C5-methyl group to provide a barrier to Batho decay, raises the possibility that the 5-demethylretinal ring binds oppositely from normal to form a pigment with a 6-s-trans ring-chain conformation. If 6-s-trans binding occurred, the ring C1-methyls could replace the C5-methyl in its interaction with the chain C8-hydrogen to preserve the steric barrier to Batho decay, consistent with the kinetic results. The possibility of 6-s-trans binding for 5-demethylretinal also could account for the unexpected blue shift of 5-demethyl visual pigments and could explain why 5-demethyl artificial pigments regenerate so slowly. Although the mesityl analogue BSI's absorption spectrum was blue-shifted relative to its pigment spectrum, the blue shift was much smaller than for rhodopsin's or 5-demethylisorhodopsin's BSI. This suggests that increased C6-C7 torsion may be responsible for some of BSI's blue shift, which is not the case for mesityl analogue BSI either because of reduced spectral sensitivity to C6-C7 torsion or because the symmetry of the mesityl retinal analogue precludes having 6-s-cis and 6-s-trans conformers. The similarity of the mesityl analogue BSI and native BSI lambda(max) values supports the idea that BSI has a 6-s angle near 90 degrees, a condition which could disconnect the chain (and BSI's spectrum) from the double bond specifics of the ring.  相似文献   

20.
The retina of vertebrates contains two kinds of photoreceptor cells, rods and cones, which contain their specific visual pigments that are responsible for scotopic and photopic vision, respectively. In cone photoreceptor cells, there are three types of color pigments: blue, green and red, each with a distinctive absorption maximum. The goal of this investigation was to identify optimal conditions under which these pigments could be obtained and isolated in a stable form, thereby facilitating structural studies using high‐resolution approaches. For this purpose, all three human cone opsins were initially expressed in mammalian cells, reconstituted with 11‐cis retinal, detergent solubilized, purified and their stability compared with rod rhodopsin. As all three pigments showed dramatically reduced stability relative to rhodopsin, site‐directed mutagenesis was used in an attempt to engineer stability into the green cone pigment. The mutations introduced some structural motifs and sites of posttranslational modification present in rhodopsin, as well as amino acid substitutions that have been found to stabilize the rod opsin apo‐protein. We also modified the hydrophobic environment of the green cone pigment by varying the detergent and detergent/lipid composition used during solubilization and purification, and compared them with the retinal reconstituted pigment in membranes. Our results show that these changes do not significantly improve the inherent instability of the human cone pigments, and in some cases, lead to a decrease in stability and protein aggregation. We conclude that further efforts are required to stabilize the human cone pigments in a form suitable for high‐resolution structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号