首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative Ligands. XXV. New Chelating Ligands of the Type Me2ESiMe2(CH2)2E′Me2 (E=P, As; E′=N, P, As) Chelating ligands of the type Me2EsiMe2(CH2)2E′ Me2, have been prepared by the following routes: Starting from Me2Si(Vi)Cl, the compounds with E=N and E′ =N ( 1 ), P ( 2 ), As ( 3 ) are obtained in yields of 65 to 78% by aminolysis to yield Me2NSiMe2Vi, followed by the LiE′ Me2 catalyzed addition of He′Me2 to the vinyl group. The intermediates ClSiMe2(CH2)E′Me2 [E′=N ( 4 ), P ( 5 ), As ( 6 )] are produced by the reactions of 1 to 3 with PhPCl2. 5 and 6 can be prepared in a purer form by the photochemical addition of HPMe2 and HAsMe2, respectively, to the vinyl group of Me2Si(Vo)Cl. 4 to 6 react with LiEMe2, in situ prepared from n-BuLi and HEMe2, to yield the ligands Me2ESiMe2(CH2)2E′Me2 ( 7–12 ) (E=P, As; E′=N, P, As). The new compounds have been characterized by analytical and spectroscopic investigations (NMR, MS).  相似文献   

2.
Chelate Complexes of the Type M(CO)4(Me2XGeMe2CH2X′Me2) (M) = Cr, Mo, W; X, X′ = N, P, As; Me = CH3) The ligands (Me2)XGeMe2CH2X′Me2 (M) = Cr, Mo, W) react with M(CO)4norbor (norbor = Norbornadiene) (M = Cr, Mo, W) yielding the chelate complexes M(CO)4(Me)2XGeMe2CH2X′Me2). compounds of low thermal stability are formed with the ligands (Me2NGeMe2CH2X′Me2 because of the weak donor ability of the GeNMe2 group and with Me2AsGeMe2CH2NMe2 caused by strong steric ring tension. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., m.s.) investigations.  相似文献   

3.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2.  相似文献   

4.
Atrane-analogous Compounds. III. Atrane-analogous Compounds of the Type Me2DCH2CH2OSi(Me)(OCH2 CH2)2 D′Me (I) and Type Me2DCH2CH2OSi(Me) OCH2CH22D″Me2 (II) (Me?CH3; D, D′, D″?N, P, As) Atrane analogous compounds I and II (Abb. 1) have been prepared by condensation reactions of trifunctional silanes RSiX3 (X?Cl, OEt, NMe2) with N-methyldiethanolamine, ß-chloroethanol, ß-dimethylaminoethanol, and ß-dimethylarsanoethanol according to eqn. (1) to (3) and reaction schemes of Figs. 2 and 3, respectively. For compounds of type I weak N→Si adduct bonding is indicated for the MeN-donor of the eight-membered ring by significant shifts of the MeNCH2 and OCH2 proton n.m.r. signals. For compounds of type II there is no n.m.r. evidence for D→Si interactions. In spite of equal Lewis acidity of the Si atoms differences in adduct formation are observed for cage, ring, and acyclic podand systems, which can be explained mainly by entropy effects connected to the formation of five-membered rings.  相似文献   

5.
Perfluoromethyl-Element-Ligands. XVII. Formation of Adducts of MenE(CF3)3?n Ligands with BX3 Compounds (Me = CH3; E = P, As, Sb; n = 0–3; X = H, CH3, Hal) The ligands MenE(CF3)3?n (Me = CH3; E = P, As, Sb; n = 0–3) have been prepared (partly using new methods) and studied by n.m.r. spectroscopy (1H, 19F, 31P, 13C). In order to deduce their relative donor strength their reactions with the Lewis acids “BH3”, BMe3, BMe3, Me2BBr, and BX3 (X = F, Cl, Br) have been studied. Control of adduct formation occurs by n.m.r. spectroscopy (1H, 19F). The following series of decreasing basicity or acidity are obtained:   相似文献   

6.
7.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

8.
Alternative Ligands. XXI. Novel Donor/Acceptor Ligands Me2PCH2CH2SiFnMe3-n, Me2PCH2CH2SiR(C6H4F)2, and (2-Me2PC6H4)SiXMe2 Donor/acceptor ligands of the type Me2PCH2CH2SiX3 [X = Cl ( 1 ), F ( 2 ), Me ( 3 ), OMe ( 4 )], (Me2PCH2CH2)2SiX2 [X = Cl ( 6 ), F ( 7 )], Me2PCH2CH2SiX(C6H4F)2 [X = F ( 5 ), Me ( 8 )], and Me2PCH2CH2SiXnMe3-n[n = 1; X = Cl ( 10 ), F ( 11 ); n = 2; X = F ( 9 )] are prepared in yields between 42 and 95% by photochemical addition of Me2PH to the corresponding vinylsilane precursors. In case of the halogen containing representatives formation of solid polyadducts, due to Lewis acid/base interaction between P-donor and Si-acceptor function, reduces the yields. Ligands of the type (2-Me2PC6H4)SiXMe2 [X = NMe2 ( 12 ), Cl ( 13 ), F ( 14 )] are obtained by two different routes (Abb. 3), using 2-chlorobromobenzene as the starting material. New compounds have been characterized by analytical (C, H) and spectroscopic (NMR, MS) investigations. In order to elucidate the associative properties compounds 2 and 9 were used for the following experiments:
  • – Study of the influence of dissolution on the proton and fluorine resonances of 2 and 9 ,
  • – investigation of the adduct equilibrium (–H2CF3Si←PMe2CH2–)n + nBF3 → n[F3B←PMe2CH2CH2SiF3],
  • – cleavage of the polyadduct of 2 using [NH4]F and [Me4N]F, respectively, for the formation of hexacoordinate complex anions [Me2PCH2CH2SiF5]2?.
The results obtained confirm the assumption that oligo- and polymerisation are due to P→Si interaction.  相似文献   

9.
10.
Mixed-ligand Complexes of Rhenium. V. The Formation of Nitrene Complexes by Condensation of Acetone at Coordinated Nitrido Ligands. Syntheses and Structures of fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] Complexes (X = Cl, Br) The reaction of rhenium(V)-mixed-ligand complexes of the general formula [ReN(Cl)(Me2PhP)2(R2tcb)] (HR2tcb = N? (N,N-dialkylthiocarbamoyl)benzamidine) with HCl or HBr in acetone initializes a condensation of the solvent and results in nitrene-like compounds as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the condensed acetone. The chelate ligands are removed during this reaction and complexes of the type fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] (X = Cl, Br) are formed. fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] crystallizes triclinic in the space group P1, a = 8.575(4); b = 9.088(3); c = 18.389(9) Å; α = 75.67(3)°, β = 85.30(3)°, γ = 70.58(4)°; Z = 2. A final R value of 0.031 was obtained on the basis of 6011 independent reflections with I ≥ 2σ(I). Rhenium is coordinated in a distorted octahedral environment with the three chloro ligands in facial positions. The rhenium-nitrogen bond (1,68(1) Å) is only slightly longer than typical Re? N bonding distances in nitrido complexes. fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] is isomorphous with the chloro complex. Triclinic cell with a = 8.625(4); b = 9.198(3); c = 18.581(5) Å; α = 75.62(3)°, β = 85.40(3)°, γ = 70.91(3)°; Z = 2. The R value converged at 0.049 on the basis of 3644 independent reflections with I ≥ 2σ(I). fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] as well as fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] crystallizes in the noncentrosymmetric space group P1.  相似文献   

11.
Novel Syntheses of Me2SbX (X = Cl, I) and Crystal Structures of Me2SbI and [(Me3Si)2CH]2SbCl The crystal structures of Me2SbI (Me = CH3) and [(Me3Si)2CH]2SbCl have been determined by X‐ray methods. Both molecules are pyramidal. The Me2SbI molecules are associated to chains through short intermolecular Sb…I distances (366,7(1) pm) with linear I–Sb…I units (171,87(4)°) and bent Sb–I…Sb bridges (116,83(3)°).  相似文献   

12.
Reactive E=C(p‐p)π‐Systems. 54 [1] Reactions of perfluoro‐2‐arsapropene, F3CAs=CF2 (1), with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se) The reactions of the perfluoro‐2‐arsapropene ( 1 ) with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se), respectively, proceed via addition to the As=C double bond yielding either secondary arsanes F3C(H)AsCF2X (X = NMe2, PMe2, OMe, SMe) or AsX derivatives (X = AsMe2, SeMe). Me2‐AsH is obviously a border case nucleophile because, besides the AsX derivative as main product, small amounts of the arsane are formed indicative for the reverse addition pathway. With the strong base Me2NH, the addition is followed immediately by HF elimination producing the fairly stable arsaalkene F3CAs=C(F)NMe2 ( 4 ) which had already been obtained by reaction of HAs(CF3)2 with three equivalents of Me2NH. The novel rather labile compounds were identified by spectroscopic (NMR, GC/MS) investigations. – Quantum chemical DFT calculations [B3LYP/6‐311+G(d,p)] were carried out to determine the relative energy of the isomeric products and the thermodynamics of the addition reactions.  相似文献   

13.
Monomeric Dialkyl Metal Complexes of the R2M(NR′)2XR Type with M = Al, Ga, In, Tl; X = S, C and R, R′ = Alkyl and Silyl N,N′-Bis(trimethylsilyl)sulfurdiimide reacts with the trimethyl derivatives of aluminium, gallium, and indium within insertion. Hereby monomeric sulfinic acid imidamidates Me2M(NSiMe3)2SMe (Me = CH3) are formed. The lithium amidinates Li(NR′)2CMe (R′ = i-C3H7 and SiMe3) are formed likewise by insertion reactions with LiMe and the corresponding carbodiimides R′N?C?NR′ and were used in reactions with R2MCl (M = Al to Tl) to synthesize dialkyl metal amidinates R2M(NR′)2CMe. The NMR (1H and 13C) and the vibrational spectra (IR and Raman) are discussed and applied to describe the structure of these chelat complexes.  相似文献   

14.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

15.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

16.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

17.
The reactions of PhCH2SiMe3 ( 1 ), PhCH2SiMe2tBu ( 2 ), PhCH2SiMe2Ph ( 3 ), 3,5‐Me2C6H3CH2SiMe3 ( 4 ), and 3,5‐Me2C6H3CH2SiMe2tBu ( 5 ) with nBuLi in tetramethylethylenediamine (tmeda) afford the corresponding lithium complexes [Li(tmeda)][CHRSiMe2R′] (R, R′ = Ph, Me ( 6 ), Ph, tBu ( 7 ), Ph, Ph ( 8 ), 3,5‐Me2C6H3, Me ( 9 ), and 3,5‐Me2C6H3, tBu ( 10 )), respectively. The new compounds 5 , 7 , 8 , 9 and 10 have been characterized by 1H and 13C NMR spectroscopy, compounds 7 , 8 and 9 also by X‐ray structure analysis.  相似文献   

18.
Alternative Ligands. XXII. Rhodium(I) complexes with Donor/Acceptor Ligands of the Typs Me2PCH2CH2SiXnMe3?n(X = F, Cl, OMe) Donor/acceptor ligand of the type Me2PCH2SiXnMe3?n react with [Rh(CO)2Cl]2 ( 1 ) to give the mononuclear complexes RhCl(CO)(PMe2CH2CH2SiXnMe3?n)2 ( 2-6 , Table 1) with planar geometry of the donor atoms, one exception being Me2PCH2CH2CH2SiCl3, yielding the crystalline RhIII-complex RhCl2(CO)(PMe2CH2CH2SiCl2)(PMe2CH2CH2SiCl3) ( 7 ) by oxidative addition of one of the SiCl bonds to the Rh1 precursor. Structures with Rh → Si interaction between the basic central atoms and the acceptor group SiXnMe3?n could be detected in the isolated products neither spectroscopically nor by X-ray diffraction of the two representatives RhCl(CO)(PMe2CH2CH2SiF3)2 ( 2 ) and RhCl(CO)[PMe2CH2CH2siF3]2 ( 2 ) and RhCl(CO) [PMe2CH2CH2Si(OMe3]2 ( 6 ). The presence of such acid/base adducts in the reaction mixture is indicated for the more acidic acceptor groups SiXnMe3?n byvco values near 1990cm?1, (see Table 3). The complex RhCl(CO)PMe3)(PMe2CH2CH2SiF3 ( 8 ) is obtained by the reaction of RhCl(CO)(PMe3)2 ( 9 ) with Me2PCH2SiF3 and has been identified spectroscopically in a mixture with 2 and 9 .  相似文献   

19.
(N,N,N′,N′ -tetramethylethylendiamine) di(tert-butyl)aluminium Cations — Molecular Structure of [(Me3C)2Al(TMEDA)][(Me3C)2AlBr2]? Dimeric di(tert-butyl)aluminium halides (Me3C)2AlX (X = Cl, Br) react with N,N,N′,N′ -tetramethylethylendiamine (TMEDA) to give three compounds: the salt-like [(Me3C)2Al(TMEDA)][(Me3C)2AlX2]? 1 , characterized by crystal structure determination, and [(Me3C)2Al(TMEDA)]X? 3 both with chelating amine, and the more covalent, pentane soluble (Me3C)2AlX(TMEDA) 2 with TMEDA bound by only one nitrogen atom. The reaction resembles the symmetrical and unsymmetrical cleavage of diborane(6). 3 (X = Cl) is also formed by treatment of 1 with boiling n-hexane in the presence of TMEDA over a period of 24 hours, while for X = Br the more covalent 2 is the main product under similar conditions. In solution 2 decomposes slowly yielding different products in dependency of the solvent: in benzene 3 and in n-pentane 1 are formed.  相似文献   

20.
Formation and Reactions of the CH2Li‐Derivatives of tBu2P–P=P(CH3)tBu2 and (Me3Si)tBuP–P=P(CH3)tBu2 With nBuLi, (Me3Si)tBuP–P=P(CH3)tBu2 ( 1 ) and tBu2P–P=P(CH3)tBu2 ( 2 ) yield (Me3Si)tBuP–P=P(CH2Li)tBu2 ( 3 ) and tBu2P–P=P(CH2Li)tBu2 ( 4 ), wich react with Me3SiCl to give (Me3Si)tBuP–P=P(CH2–SiMe3)tBu2 ( 5 ) and tBu2P–P=P(CH2–SiMe3)tBu2 ( 6 ), respectively. With tBu2P–P(SiMe3)–PtBuCl ( 7 ), compound 3 forms 5 as well as the cyclic products [H2C–P(tBu)2=P–P(tBu)–PtBu] ( 8 ) and [H2C–P(tBu)2=P–P(PtBu2)–P(tBu)] ( 9 ). Also 3 forms 8 with tBuPCl2. The cleavage of the Me3Si–P‐bond in 1 by means of C2Cl6 or N‐bromo‐succinimide yields (Cl)tBuP–P=P(CH3)tBu2 ( 10 ) or (Br)tBuP–P=P(CH3)tBu2 ( 11 ), resp. With LiP(SiMe3)2, 10 forms (Me3Si)2P–P(tBu)–P=P(CH3)tBu2 ( 12 ), and Et2P–P(tBu)–P=P(CH3)tBu2 ( 13 ) with LiPEt2. All compounds are characterized by 31P NMR Data and mass spectra; the ylide 5 and the THF adduct of 4 additionally by X‐ray structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号