首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered aromatic polyamides and copolyamides were prepared by the polycondensation of terephthaloyl and isophthaloyl dichlorides with symmetrical diamines containing preformed amide linkages derived from unsymmetrical methyl—substituted aromatic diamines at low temperature. Thermal properties and solubilities of the ordered polyamides were compared with those of the corresponding random polyamides. There was little difference between thermal stabilities of the ordered polyamide and the corresponding random one, while the former was less soluble in organic solvents than the latter, depending on the extent of hydrogen bonding of the amide groups. The thermal stability of the alternating copolyamides containing both terephthaloyl and isophthaloyl groups as acid components was less than that of the corresponding homopolymers having either a terephthaloyl or an isophthaloyl group, and the solubility of the former resembled that of the corresponding ordered homopolysiophthalamides in accord with the extent of hydrogen bonding of the amide groups in both polymers.  相似文献   

2.
Various wholly aromatic polyamides based on m-and p-phenylene diamines and isophthaloyl and terephthaloyl chloride have been synthesized and their thermal properties and oxygen index values have been studied. The effect of different substituents on the aromatic ring of the diamine have been explored by comparing their differential thermal analysis (DTA) and thermogravimetric analysis (TGA) behavior, their relative char yields at 700°C, and their oxygen indices. The ? Cl, ? NO2, and ? OH substituted polyamides have been found to produce the highest char yields. The high char yields are probably associated with crosslinking occurring at high temperatures. Attempts at correlating char yield with oxygen index indicated enhancement for the chlorosubstituted aramids.  相似文献   

3.
4.
This paper presents the synthesis and characterization of two series of polymeric compounds comprising eight furan-based polyamides prepared via melt polycondensation at low temperatures using various combinations of five aromatic raw materials. The chemical and physical structures and thermal stabilities of the obtained polyamides were investigated by various characterization methods. In addition, the polyamides were subjected to solubility testing in five common organic solvents. The results showed that the proposed furan-based polyamides possessed thermal stabilities similar to those of conventional high-performance aromatic polyamides, but with greatly improved solubility. Accordingly, the introduction of furan groups increased the solubility of the polyamides with respect to the solubility of their individual precursors, which is highly advantageous for subsequent polyamide processing and expanding their range of potential applications.  相似文献   

5.
The mechanism of thermal degradation of wholly aromatic polyamides has been investigated in the light of several thermodynamic parameters, such as resonance stabilization of the free radicals formed, bond enthalpy changes and entropy changes. It has been shown that the scission of the NH bond in the beginning is both thermodynamically and kinetically favoured over the scission of the aromatic ring-carbonyl carbon bond. CN bond and the aromatic ringNH bond in the polymer chain backbone. Formation of the major products and some minor products has been explained with the help of the proposed mechanism.  相似文献   

6.
A series of novel polyamides with pendent naphthylamine units having inherent viscosities of 0.15–1.02 dL/g were prepared via direct phosphorylation polycondensation from various diamines and a naphthylamine‐based aromatic dicarboxylic acid, 1‐[N,N‐di(4‐carboxyphenyl)amino]naphthalene. These amorphous polyamides were readily soluble in various organic solvents and could be cast into transparent and tough films. The aromatic polyamides had useful levels of thermal stability associated with high glass‐transition temperatures (268–355 °C), 10% weight loss temperatures in excess of 480 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers showed maximum ultraviolet–visible absorption at 350–358 nm and exhibited fluorescence emission maxima around 435–458 nm in N‐methyl‐2‐pyrrolidinone solutions with fluorescence quantum yields ranging from 0.4 to 15.0%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple around 1.08–1.16 V (oxidation onset potential) versus Ag/AgCl in an acetonitrile solution and revealed good stability of the electrochromic characteristics, with a color change from colorless to green at applied potentials ranging from 0 to 1.6 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6094–6102, 2006  相似文献   

7.
Polyamides were prepared from linear, aliphatic dicarboxylic acids of six to twelve carbon atoms with 1,4-cyclohexanebis(methylamine), 1,4-cyclohexanebis (ethylamine), p-xylylenediamine, and p-phenylenebis(ethylamine). Melting points, glass transition temperatures, densities, and moisture regains were compared for the polymers to determine the relative effect of the cyclohexylene and phenylene linkages. While polyamides containing the trans-cyclohexylene group possessed higher glass transition temperatures than their aromatic counterparts, melting behavior was not as consistent. The odd-even rule, which states that polyamides with an even number of methylene linkages between the ring and the functional group melt higher than those with an odd number of such linkages, was violated in the cycloaliphatic systems. The Tg of ring-containing polyamide fibers was not dependent solely upon ring concentration, but was influenced by the molecular fit of the ringed intermediate in the polymer chains. Molecular fit appears to affect the Tg and melting point of alicyclic polyamides to a greater extent than the aromatic analogs. Differences in Tg, both within and among the polymer series, was not explained by either density or the degree of crystallinity.  相似文献   

8.
Thermal stability and degradation behaviour of a series of novel wholly para-oriented aromatic polyamide-hydrazides containing flexibilising sulfone-ether linkages in their main chains have been investigated in nitrogen and in air using differential scanning calorimetry (DSC), thermogravimetry (TG), infrared spectroscopy (IR) and elemental analysis. All of these polymers have similar structural formula except for the presence of sulfone, ether, or sulfone-ether linking groups between appropriate aromatic nuclei in their main chains. The influence of incorporation of these linkages on the thermal stability and degradation behaviour of these polymers has also been studied. The polymers were prepared by a low temperature solution polycondensation reaction of 4-amino-3-hydroxybenzhydrazide (4A3HBH) and an equimolar amount of either 4,4′-sulfonyl dibenzoyl chloride (SDBC), 4,4′-[sulfonyl bis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC), 4,4′-[sulfonyl bis (2,6-dimethyl- 1,4-phenylene)dioxy] dibenzoyl chloride (4MeSODBC), or 4,4′-(1,4-phenylenedioxy)dibenzoyl chloride (ODBC) in anhydrous N,N-dimethyl acetamide (DMAc) as a solvent at −10 °C. A related polyamide-hydrazide without the flexibilising linkages is also investigated for comparison. It was synthesized from 4A3HBH and terephthaloyl chloride (TCl) by the same synthetic route. The results clearly reveal that these polymers are characterized by high thermal stability. Their weight loss occurred in three distinctive steps. The first was small and was assigned to the evaporation of absorbed moisture. The second was appreciable and was attributed to the cyclodehydration reaction of the o-hydroxy polyamide-hydrazides into the corresponding poly (1,3,4-oxadiazolyl-benzoxazoles) by losing water. This is not a true degradation, but rather a thermo-chemical transformation reaction. The third was relatively severe and sharp, particularly in air, and corresponded to the decomposition of the resulting poly(1,3,4-oxadiazolyl-benzoxazoles). There is a slight shift of the decomposition temperature of these polymers to a lower temperature as the sulfone-ether linkages were introduced into the polymer chains. The decomposition seems to start by breaking the sulfonyl groups as confirmed from DSC measurements. The results also indicate that the incorporation of the flexibilising linkages into the polymer main chains did not seem to significantly influence the thermal stability of these polymers in comparison with that of the polymer free from these linkages.  相似文献   

9.
10.
1,1-Bis[4-(4-carboxyphenoxy)phenyl]cyclohexane (III) and 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (V) were prepared in two main steps starting from the aromatic nucleophilic substitution of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 1,1-bis(4-hydroxyphenyl)cyclohexane in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides with cyclohexylidene cardo groups were directly polycondensated from dicarboxylic acid III with various aromatic diamines or from diamine V with various aromatic dicarboxylic acids in an N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The polyamides exhibited inherent viscosities in the range of 0.45 to 1.78 dL/g. Almost all of the polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and could afford transparent, flexible, and tough films by solution casting. The glass transition temperatures (Tg) of these aromatic polyamides were in the range of 180–243°C by DSC, and the 10% weight loss temperatures in nitrogen and air were all above 450°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3575–3583, 1999  相似文献   

11.
Ten polyfumaramides based on fumaric acid and aromatic diamines and six polystilbenediamides based on 4,4′-stilbenedicarboxylic acid and aromatic diamines were synthesized and characterized by solubility, viscosity, density, infrared and UV-visible spectroscopy, and thermal analyses. Variation in properties with structure is discussed here.  相似文献   

12.
A series of polyisophthalamides containing pendent phthalimido groups and flexible side spacers were prepared from four novel diacids and three commercial aromatic diamines. These polyamides were prepared in high yields and with high molecular weights by direct polycondensation with triphenyl phosphite and pyridine as condensing agents. The weight‐average and number‐average molecular weights, measured by gel permeation chromatography, were 70,000–137,000 and 47,000–86,000 g/mol, respectively. The novel polyamides were amorphous and readily soluble and showed glass‐transition temperatures of 150–240 °C, as measured by differential scanning calorimetry. Thermogravimetric analysis showed that the 10% weight‐loss temperatures in nitrogen were 355–430 °C, a significant improvement in thermal stability having been observed with the increase in the side‐chain length. A theoretical quantum mechanical study was successfully carried out to explain these results. Flexible and tough films, cast from polymer solutions, showed tensile strengths of 50–125 MPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3711–3724, 2002  相似文献   

13.
A series of N-methyl-substituted aromatic polyamides derived from the secondary aromatic diamines 4,4′-bis(methylamino)diphenylmethane, 3,3′-bis(methylamino)diphenylmethane, 4,4′-bis(methylamino)benzophenone or 3,3′-bis(methylamino)benzophenone and isophthaloyl dichloride, and terephthaloyl dichloride or 3,3′-diphenylmethane dicarboxylic acid dichloride was prepared by high-temperature solution polymerization in s-tetrachloroethane. Compared with analogous unsubstituted and partly N-methylated aromatic polyamides, the full N-methylated polyamides exhibited significantly lower glass transition temperatures (Tg), reduced crystallinity, improved thermal stability, and good solubility in chlorinated solvents.  相似文献   

14.
A new 3-trifluoromethyl-substituted triphenylamine-containing aromatic diacid monomer, N,N-bis(4-carboxyphenyl)-3-trifluoromethylaniline, was prepared by the substitution reaction of 3-trifluoromethylaniline with 4-fluorobenzonitrile, followed by alkaline hydrolysis of the dinitrile intermediate. Novel aromatic polyamides with 3-trifluoromethyl-substituted triphenylamine moieties were prepared from the diacid and various aromatic diamines via the direct phosphorylation polycondensation. All the polyamides were amorphous and readily soluble in many polar organic solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone, and could be solution-cast into transparent, tough, and flexible films with good mechanical properties. They exhibited good thermal stability with relatively high glass-transition temperatures (258–327°C), 10% weight-loss temperatures above 500°C, and char yields higher than 60% at 800°C in nitrogen. These polymers had low dielectric constants of 3.22–3.70 (100 Hz), low moisture absorption in the range of 1.75–2.58%, and high transparency with an ultraviolet–visible absorption cut-off wavelength in the 375–395 nm range. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited a reversible oxidation redox couple with oxidation half-wave potentials (E1/2) of 0.95–1.00 V vs. Ag/AgCl in an acetonitrile solution.  相似文献   

15.
2,5-Bis(phenylethynyl)terephthaloyl chloride and 4,6-bis-(phenylethynyl)isophthaloyl chloride were synthesized in a multistep reaction scheme from 2,5-dibromoterephthaldehyde and 4,6-dibromoisophthaldehyde, respectively. Low temperature solution polycondensation of these novel monomers and tolane-2,4′-dicarbonyl chloride with aromatic diamines yielded aromatic polyamides containing phenylethynyl moieties. Inherent viscosities of 0.20–0.51 dL/g were recorded. Attempts to carry out the homopolymerization of 2-(3-aminophenylethynyl)benzoyl chloride hydrochloride under similar conditions led to low molecular weight polyamide. Under differential scanning calorimetry and thermal mechanical analysis, the polyamides exhibited strong exotherms with onset occurring in the 185–225°C range. The exotherms were attributable to intramolecular cycloaddition of phenylethynyl moieties with amide groups to give polybenzalphthalimidine structures. Curing of a pressed pellet specimen for 16 h at 250°C under a nitrogen atmosphere resulted in partial conversion to a polybenzalphthalimidine structure with a concomitant increase in the polymer glass transition temperature. Isothermal aging in air of the cured specimen at 316°C (600°F) led to 25% weight loss after 200 h.  相似文献   

16.
The preparation of rigid aromatic, highly branched polyamides is described. Owing to the method of preparation and the chosen ratio of difunctional to trifunctional monomers, these entities are highly porous and not dendrimeric in nature. They better conform with the fractal model and are therefore called fractal polyamides (FPs). The effects of variations in the polymerization procedure, in total monomer concentration, in the ratio of amine to carboxyl groups and in the duration of the polycondensation reaction are investigated. Some characterization was performed and the results are presented and briefly discussed.  相似文献   

17.
Wholly aromatic polysulfonamides of high molecular weight were prepared by the solution poly-condensation of aromatic disulfonyl chlorides with aromatic diamines in tetramethylene sulfone and substituted pyridines as the acid acceptor. Polysulfonamides with inherent viscosities as high as 1.2 were readily obtained by initiating polycondensation at a temperature of 5–10°C to control the side reactions. The polycondensation was fairly fast and was completed in 10 min at 60°C. All the aromatic polysulfonamides dissolved in a wide range of solvents, including acetone and tetrahydrofuran. These polymers were less thermally stable than the corresponding aromatic polyamides.  相似文献   

18.
19.
Strength of fibers from wholly aromatic polyesters   总被引:1,自引:0,他引:1  
A theory of the strength (or the tenacity) of highly oriented Liquid Crystal Polymer (LCP) fibers was developed, and its results were compared with existing tensile strength data of fibers of a copolymer of 1,4-oxybenzoate and 6,2-oxynaphthoate. A basic premise of the theory is that the mechanical load transfer between polymer chains is through intermolecular interaction which acts in a manner similar to that of shear stress, and that the fiber strength is primarily governed by the intermolecular adhesion strength. The theory also incorporates the effects of MW, MW distribution, and the chain orientation distribution. Analysis of the experimental tenacity data demonstrates that the present theory can quantitatively describe the variation of the tenacity of LCP fibers with MW both in the as-spun and in the heat-treated states. The theory further predicts that the predominant factor governing the tenacity of LCP fibers is primarily due to MW increase due to solid-state polymerization. It is also demonstrated that the intermolecular adhesion between LCP chains is relatively weak and does not improve with heat treatment. The absence of factors that limit the MW increase (i.e, imbalanced end-groups and side reactions of end groups) is a prerequisite for fast heat treatment of a LCP fiber to a high tenacity.Symbols A f the cross-sectional area of a single polymer chain - E f the theoretical modulus of a polymer chain - G m the shear modulus of fiber - h(l) the chain length distribution function - l the chain length - l the number average chain length - l c the length of chain units that are bonded to adjacent polymer chains - n 2 4G m/CEf - N c the number of polymer chains per unit area perpendicular to the fiber axis - P b the probability that a chain does not have a chain end in the fracture zone - P e the probability that a chain has, at least, a chain end in the fracture zone - q e,q b the probability of finding an ending and a bridging polymer chain, respectively, in the fracture zone - l the length of fracture zone - the elongation of a polymer chain - the chain orientation angle - f the normal stress that acts on a polymer chain - fu the fiber tenacity - e the shear stress that acts on a polymer chain surface Dedicated to Prof. Dr. rer. nat. Wolfgang Hilger, Chairman of Hoechst A.G. in honor of his 60th birthday  相似文献   

20.
Two series of new polyamides containing flexible ether linkages and laterally attached side rods (3a-i and 4a-i) were synthesized from 2,5-bis(4-aminophenoxy)-[1,1;4,1]terphenyl (1a) and 2,5-bis(4-amino-2-trifluoromethylphenoxy)-[1,1;4,1]terphenyl (1b), respectively, with various aromatic dicarboxylic acids by the direct phosphorylation polycondensation. The polymers were produced with high yields and moderate to high inherent viscosities (0.41-0.97 dl/g) that corresponded to weight-average molecular weights (by size exclusion chromatography) of 47,000-65,000. Except for some polyamides that derived from rigid diacids, the obtained polyamides were readily soluble in aprotic polar solvents, such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc), and could afford flexible and tough films via solvent casting. The polymer films cast from DMAc solutions possessed tensile strengths of 85-106 MPa and initial moduli of 1.82-2.96 GPa. These polyamides showed glass-transition temperatures (Tg) in the range of 206-263 °C (by DSC) and softening temperatures (Ts) in the range of 211-253 °C (by TMA). Decomposition temperatures (Td) for 10% weight loss all occurred above 400 °C (by TGA) in both nitrogen and air atmospheres. The polyamides 4a-i derived from trifluoromethyl-substituted diamine 1b generally showed a higher solubility, Tg and Ts but lower thermal stability as compared to the analogous polyamides 3a-i based on diamine 1a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号