首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] Nitrated fatty acids act as endogenous peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and nitric oxide (NO) donors. We describe the first specific preparation of the two regioisomers of nitrooleic acid, (E)-9-nitrooctadec-9-enoic acid (1) and (E)-10-nitrooctadec-9-enoic acid (2), from cis-cyclooctene and monomethyl azelate, respectively. These syntheses rely upon a Henry condensation between a nine-carbon nitro component and a nine-carbon aldehyde. Preliminary chemiluminescence NO detection studies reveal the ability of these nitrated fatty acids to release NO.  相似文献   

2.
3.
4.
NiII complexes with the Schiff bases of (E)-and (Z)-2-aminobut-2-enoic acids were obtained with (S)-N-(2-benzoylphenyl)-1-(2-chlorobenzyl)pyrrolidine-2-carboxamide and (S)-N-(2-benzoylphenyl)-1-(3,4-dimethylbenzyl)pyrrolidine-2-carboxamide as new chiral auxiliaries. Asymmetric addition of nucleophiles to the C=C bond of these complexes was studied. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 428–435, March, 2006.  相似文献   

5.
Nine-step synthesis of the title triterpenol from (E,E)-farnesol using a two-stage cis-C5-homologation procedure is descrilaed.  相似文献   

6.
Summary.  Ab initio calculations at the HF/6-31G* level of theory for geometry optimization and the MP2/6-31G*//HF/6-31G* level for a single point total energy calculation are reported for (Z,Z)-, (E,Z)-, and (E,E)-cycloocta-1,4-dienes. The C 2-symmetric twist-boat conformation of (Z,Z)-cycloocta-1,4-diene was calculated to be by 3.6 kJ·mol−1 more stable than the C S-symmetric boat-chair form; the calculated energy barrier for ring inversion of the twist-boat conformation via the C S-symmetric boat-boat geometry is 19.1 kJ·mol−1. Interconversion between twist-boat and boat-chair conformations takes place via a half-chair (C 1) transition state which is 43.5 kJ·mol−1 above the twist-boat form. The unsymmetrical twist-boat-chair conformation of (E,Z)-cycloocta-1,4-diene was calculated to be by 18.7 kJ·mol−1 more stable than the unsymmetrical boat-chair form. The calculated energy barrier for the interconversion of twist-boat-chair and boat-chair is 69.5 kJ·mol−1, whereas the barrier for swiveling of the trans-double bond through the bridge is 172.6 kJ·mol−1. The C S symmetric crown conformation of the parallel family of (E,E)-cycloocta-1,4-diene was calculated to be by 16.5 kJ·mol−1 more stable than the C S-symmetric boat-chair form. Interconversion of crown and boat-chair takes place via a chair (C S) transition state which is 37.2 kJ·mol−1 above the crown conformation. The axial- symmetrical twist geometry of the crossed family of (E,E)-cycloocta-1,4-diene is 5.9 kJ·mol−1 less stable than the crown conformation. Corresponding author. E-mail: isayavar@yahoo.com Received March 25, 2002; accepted April 3, 2002  相似文献   

7.
8.
9.
(Z, E)-9, 11-Tetradecadienyl-l-acetate (1), a major component of the sex pheromone of Spodoptera litura (F.), and (Z, E}-9, 11-pentadecadienyl-1-acetate (2) were synthesized by the Wittig reaction between (E)-2-alkenal (3) and the ylid derived from 9-hydroxynonyltriphenylphosphonium bromide (4).  相似文献   

10.
trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19–C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes.  相似文献   

11.
12.
The syntheses of all four possible diastereomers of 9-(1,3,4-trihydroxy-2-butoxymethyl)guanine, starting from D- and L-xylose and from D- and L-arabinose derivatives are described.  相似文献   

13.
《Tetrahedron letters》1987,28(26):2977-2978
A ten-step synthesis of the title pheromone and its (3Z,6E)-stereoisomer from an acyclic derivative of D-xylose is described.  相似文献   

14.
Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the three geometrical isomers of cycloocta-l,5-diene 1–3.  相似文献   

15.
Efficient synthesis of ionic liquids based on stereoisomerically pure natural and synthetic higher (5Z,9Z)-alkadienoic acids and choline hydroxide was developed. The key unsaturated carboxylic acids were prepared using the stereoselective cross-cyclomagnesiation reaction of aliphatic and oxygen-containing 1,2-dienes with EtMgBr in the presence of Mg metal and Cp2TiCl2 catalyst.  相似文献   

16.
17.
Abstract  (Z)-3-(3,4-diaryl-1,2,4-triazole-5-yl)prop-2-enoic acid derivatives were obtained in the course of the reaction of N 3-substituted amidrazones with maleic anhydride, and isomerized into the (E) isomers by heating under reflux in acetic acid solution. The molecular structure of the compounds obtained was confirmed by IR and 1H NMR spectroscopy, and by X-ray crystallography for (2E)-3-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)prop-2-enoic acid. The antiviral and immunomodulating activity of several of the compounds was examined. Graphical abstract     相似文献   

18.
A short total synthesis of ajoene, (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide, has been achieved over six steps. In addition, a continuous flow synthesis under mild reaction conditions to (E,Z)-4,5,9-trithiadodeca-1,7,11-triene is described starting from simple and easily accessible starting materials. Over four steps including propargylation, radical addition of thioacetate, deprotection, and disulfide formation/ allylation, the target product can be obtained at a rate of 0.26 g h−1 in an overall yield of 12 %.  相似文献   

19.
The first synthesis of (Z)-neomanoalide ( 4 ) and an improved synthesis of its (E)-isomer 3 was accomplished in a concise, regiocontrolled manner by exploiting 2-[(tert-butyl)dimethylsiloxy]-4{[(tert-butyl)dimethylsiloxy]-methyl}furan ( 6 ) as the key reagent. Lithiation of 6 and subsequent reaction with the (2Z)- or (2E)-isomer of (6E)-3-{[(tert-butyl)dimethylsiloxy]methyl}-7-methyl-9-(2′,6′,6′-trimethylcyclohex-1′-enyl)nona-2,6-dienyl bromide ( 5 ), followed by hydrolysis, afforded the corresponding neomanoalide.  相似文献   

20.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号