首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在转镜扫描相机中,对高速旋转的转镜的面形质量,提出了较高的要求。由于离心力所造成的转镜面形的变化,使相机在成象光路中产生了象散,从而降低了图象的分辨率。高速旋转中的平面反射镜,其镜面形变量是可以通过计算求得,也可以用特定的装置测定。  相似文献   

2.
分析了影响转镜扫描相机时间分辨率的各种因素,给出了极限时间分辨率和基于相机动态摄影分辨率计算的时间分辨率的理论计算公式和结果。结合国内普遍使用的SJZ-15型转镜扫描相机,用自研设备动态像质检查仪和100ps超短脉冲激光照明两种测试方法,计算出了该相机钢转镜和铍转镜在不同转速下的实测时间分辨率值,并对数据进行了分析、比对和讨论。实测数据表明:钢转镜的转速为12×104 r/min,其最高时间分辨率约为8ns;铍转镜的实用最高转速为30×104 r/min,其最高时间分辨率约为4ns。  相似文献   

3.
李景镇 《光子学报》1978,7(1):38-45
在ZFK—500型和ZFK—2000型相机的研制过程中,对相机的五心(中间象中心,转镜中心、球罩中心、排镜代替圆中心、底片代替圆中心),从理论上作了较为详细的探讨,并找出了实现的简单途径。实验证明,相机的象质是令人满意的:ZFK—500型相机的平均动态照相分辨率是26.74条线/毫米,有的达到了32条线/毫米以上;ZFK—2000型也达到了计算值。  相似文献   

4.
本文系统地介绍了自1964年以来,西安光机所研制成功及部分小批量生产的八种转镜高速摄影机的主要性能和特点。它们是等待转镜分幅相机ZFD—20、ZFD—250、ZFD—50和ZFD—180型;同步型转镜分幅相机ZFK—250和ZFK—500型;同步型转镜扫描相机、ZSK-29型以及等待型转镜扫描瞬时摄谱仪D36型。  相似文献   

5.
转镜相机设计计算   总被引:2,自引:2,他引:0  
本文给出了在转镜条纹和分幅相机中光轴、像、转镜和底片平画相互位置的数学关系。也给出了影响记录信息质量的估价。  相似文献   

6.
谭显祥  李剑等 《光子学报》2000,29(Z1):47-50
转镜式超高速相机中增配了别汉棱镜转像机构后,对光学系统像差计算结果表明:相机的成像质量不受影响,甚至略有改善。鉴于转像机构在相机使用中带来的种种方便,提出了把棱镜转像机构作为相机固定组成部分的建议。特别是当高速分幅相机中配置棱镜转像机构后,可以充分利用相机的最高空间分辨方向,从而成倍地提高相机的时间分辨本领。  相似文献   

7.
本文介绍了转镜式高速扫描相机SJZ——30型铍转镜部件研制与试验情况。 用SJZ——30型铍转镜部件装备SJZ——15型转镜式高速扫描相机,使其转速由15×10~4r/min提高至30×10~4r/min,即转镜的扫描速度提高一倍,且提高了时间分辨本领和动态空间分辨率。  相似文献   

8.
本文从排镜代替圆产生的离焦和不共轴性出发,推导了在底片代替圆上离焦计算的精确公式,克服了传统计算方法所引入的误差,为评价转镜分幅相机的像质提供了更可靠的依据。  相似文献   

9.
对Schadin教授提出的转镜分幅相机的鉴别率极限的信息量概念所作的进一步理论探论,构成了本文的大部分篇幅。根据转镜的尺寸和目标的扩散速度所限定的孔径比、鉴别率、分幅速度、有效曝光时间和对光源的要求,提出了一个完全的信息。在这个信息里,可以得到作为象速函数的每幅的平均鉴别率。可以利用这个函数来评定不同型号的转镜分幅相机。此外,还简要地叙述了旋转棱镜和析象管相机、电光快门和变相管的理论研究方面的进展。析象管和变象管所固有的低鉴别率,表明它们用在最高象速区域很有效,而高鉴别率的转镜相机和旋转棱镜动片相机用在比较低的速度区域是非常有效的。  相似文献   

10.
为了研究高速飞行弹丸的运动姿态问题,提出转镜同步跟踪技术。在高速CCD相机主光轴方向放置一面转镜,将弹道线位置上飞行弹丸的运动姿态反射到高速CCD相机内实现同步跟踪。设计了基于高速CCD相机视场中点的转镜跟踪系统,建立了弹丸和转镜的运动模型,并利用MATLAB软件得到了其随时间变化的曲线,分析了相机和转镜空间位置对成像质量的影响。针对参数H=200 m,V=100 m/s,对系统存在的误差进行了分析,结果表明该系统可以实现对高速弹丸的同步跟踪。  相似文献   

11.
根据胶片图象形式的不同,转镜相机可分为两类,即扫描摄影机和分幅摄影机。由于它们各有利弊,因此,最好的方法是能用一台摄影机,同时得到现象的扫描和分幅图象。国际上有美国的330A型相机,但它采用空间光路,三面体铍转镜及整体充氦技术,这就给技术、工艺带来许多困难。本文根据我国的具体情况,提出了一种新颖方案来同时实现分幅、扫描,它包括以下内容: 采用两层共面光路可实现同时分幅扫描。研究了几种可能的等待形式,以尽量减少整体尺寸,入口角,增大光力,提高象质。同时,进行了结构优选,对空间光路的实现方式作了比较研究,给出了光学系统的设计参数。 实验中,首先采用了高强度铝合金六面体转镜。用弹性力学理论,对六面体铝转镜的强度及变形进行了精确计算,证明其变形量仅为同样回转半径三面体铍转镜的1.45倍,边缘线速度达816m/s。此外,对铝转镜进行了强度及变形实验,实验结果表明:其性能与理论相符,满足役计要求。 采用了国内较成熟的真空球罩技术,与充氦气相比,大大降低了成本。  相似文献   

12.
张文博  冯斌  武耀霞 《应用光学》2017,38(5):706-712
基于高速CCD相机主光轴的转镜弹道同步跟踪系统,研究了高速飞行弹丸飞行姿态和飞行速度的问题,利用转镜的反射原理和转镜运动规律,建立了转镜随弹丸运动的时空关系模型和转镜运动参数的数学模型,并推导转镜运动参数与弹丸飞行速度和弹道距转镜中心垂直高度之间的数学关系;在理论分析的基础上,用MATLAB分析了转镜视场内的弹道宽度随时间变化的规律以及转镜转角和角加速度随时间变化的规律,得到在某一时刻转镜视场的大小以及转镜参数的变化曲线;给出了转镜尺寸、扫描速率曲线和最大离散速度等主要参数的计算方法,分析了它们对整个跟踪系统的影响。针对系统设置参数为h=150 m, v=300 m/s时进行仿真,仿真结果表明本系统可实现对高速弹丸的同步跟踪。  相似文献   

13.
转镜相机像面设计中,基于传统代替圆理论的设计存在原理性误差,而通过综合考虑几种代替圆理论衍生出来的最佳设计理论会出现圆心不重合、转镜中心点偏离坐标中心等问题,对加工和装配的要求高.在数字像面设计中,把转镜旋转中心点设为坐标中心,推导出每个传感器成像像面坐标和像面边缘离焦量方程,从模拟结果可以看出,转镜扫描时形成了Pascal蜗线,且每个像面又单独为一条直线,符合高速转镜原理和本文计算理论的结论.可为像面定位、工作角、倾斜角选取提供依据.  相似文献   

14.
本文介绍一种高性能、高指标的高速转镜装置—用交流电机驱动、弹性滚动增速机构增速的每分钟50万转的电动摩擦升速高速转镜装置。 在转镜式高速摄影机中,反射镜的转速直接影响摄影机的主要指标—摄影频率和时间分辨率。因此,研制高性能、高指标的高速转镜装置是研制转镜式高速相机的关键。  相似文献   

15.
在等待式转镜高速摄影机中,应用最多的是正多边形截面的转镜,而转镜高速旋转时的弹性变形,是影响扫描相机象质的主要因素。目前,国内对柱形截面转镜的变形研究  相似文献   

16.
扫描相机的转镜在高速旋转时要产生形变,运用弹性力学的知识,可以将这形变用偏微分方程组列出来,因此这是一个空间弹性力学问题。然而对柱状转镜而言,为了减少计算量,一般地都把这些空间问题简化为平面形变问题。  相似文献   

17.
谭显祥  黄福 《光子学报》1988,17(1):64-67
本文介绍了转镜式高速相机在爆炸实验中的应用情况。阐明了这些相机使用时配备的各种主要附加装置,并举例说明了所得到的实验结果。  相似文献   

18.
随着超快物理实验研究的开展,急需建立高时空分辨的测量设备以研究高能产物的运动特性。目前,转镜高速分幅摄影相机的时间分辨力已经不能完全满足需求。因此,研究具有更高时间分辨能力的超高速光电分幅相机具有重要的意义。借助自研的超高速光电分幅相机,进行了爆轰加载下的柱壳膨胀断裂实验,同时使用转镜相机进行测量。实验结果表明,光电相机的消动态模糊能力更强,拍摄效果更好,而转镜相机拍摄的幅数更高。根据该结果,建议将两种相机配合使用,以更好地对物理过程进行测量。  相似文献   

19.
随着超快物理实验研究的开展,急需建立高时空分辨的测量设备以研究高能产物的运动特性。目前,转镜高速分幅摄影相机的时间分辨力已经不能完全满足需求。因此,研究具有更高时间分辨能力的超高速光电分幅相机具有重要的意义。借助自研的超高速光电分幅相机,进行了爆轰加载下的柱壳膨胀断裂实验,同时使用转镜相机进行测量。实验结果表明,光电相机的消动态模糊能力更强,拍摄效果更好,而转镜相机拍摄的幅数更高。根据该结果,建议将两种相机配合使用,以更好地对物理过程进行测量。  相似文献   

20.
汪伟  尚长水  谭显祥 《应用光学》2008,29(5):708-712
理论上分析转镜分幅相机分幅系统放大倍率不一致产生的原因及因素。给出分幅系统放大倍率校正的方法,并以国内普遍使用的FJZ-250型高速转镜分幅相机为例,给出了每一画幅的放大倍率和校正系数。实测结果表明:分幅系统的放大倍率的不一致性与理论计算值差异较大,以校正的数据去分析处理爆轰实验底片,其空间测试精度有较大的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号