共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Roman V. Shpanchenko Alexander S. Mitiaev Evgeny V. Antipov Eiji Takayama-Muromachi 《Journal of solid state chemistry》2005,178(10):3014-3019
The first tin vanadium phosphate SnVPO5 was synthesized by a solid-state reaction and characterized by X-ray single crystal diffraction and magnetic susceptibility measurements. The crystal structure of SnVPO5 (, , , α=113.283(11)°, β=108.037(9)°, γ=94.603(9)°, S.G. P-1, Z=2) is a three-dimensional framework constructed by V2O10 units fasten together by tetrahedral phosphate groups. Tin atoms are situated in structure interstices. They have five-fold coordination arrangement due to a presence of sterically active lone pair which position was visualized by ELF calculations. The magnetic susceptibility shows a broad maximum at 22 K which is probably due to low-dimensional spin correlations. We propose that the magnetism of the compound can be understood by interacting spin-dimers on a distorted square lattice. Strong quantum fluctuations were suggested by unusual field dependence of the transition temperature and unexpectedly low Curie constant. 相似文献
3.
Nanoparticles of rutile SnO2 were synthesized by precipitation at room temperature. Samples were characterized with X-ray diffraction, transmission electron microscopy, thermoanalysis and nitrogen physisorption by BET method. The rutile crystalline structure was refined by Rietveld method. Crystallites had spherical morphology with crystallite sizes growing with the annealing temperature. The spherical crystallites aggregate to form grains composed of a number of crystallites defining the specific surface area and porosity. The crystallites contained hydroxyls in their structure and on their surface generating considerable amount of tin vacancy sites in the structure. These hydroxyls modify the Sn-O bonds, increase the lattice parameters and produce asymmetry in the representative rutile tin-oxygen octahedron. As the dehydroxylation was done with the annealing temperature, the atomic bond length between the oxygen atoms shared by adjacent octahedra decreased, contracting the lattice and increasing the symmetry. 相似文献
4.
《Journal of Coordination Chemistry》2012,65(15):2712-2725
A new tin(IV) complex, (C13H10NO)[SnCl4(C9H6NO)]·2CH3OH, was prepared in a facile process and characterized by 1H, 13C, and 119Sn NMR, IR, and UV spectroscopy in addition to single-crystal X-ray diffraction analysis. Current–voltage (I–V) characteristics, photoluminescence (PL), and electroluminescence (EL) properties of the complex have been investigated and an application of the prepared complex in fabrication of an organic light-emitting diode has been demonstrated. The EL of the compound exhibits blue–green emission at 494?nm. Tin(IV) oxide core that resulted from direct thermal decomposition of the complex at 450?°C in air was characterized by X-ray powder diffraction and scanning electron microscopy; then, the PL property was investigated and compared with the PL of the complex. The tin(IV) oxide core showed a band gap of ~3.81?eV determined from the UV/visible absorption spectrum. The tin oxide core showed stable PL with one emission peak centered at 581?nm. 相似文献
5.
The effect of hydrogen chemisorption on the strength of Ti-Ti bonds is studied byab initio configuration interaction techniques using an embedding theory to describe the electronic structure. A Ti adatom on Ti(0001) is modelled by a Ti20H cluster with boundary potentials determined from the embedding treatment. Hydrogen atom chemisorption is highly exothermic for adsorption atop the adatom, a three-fold site formed by the adatom and in the interstitial site below the adatom. Compared to the planar Ti(0001) surface the adatom region binds hydrogen much more strongly. Removal of Ti from the surface is energetically much more favorable if H remains on the surface as opposed to the removal of TiH. The exchange reaction Ti20+HTi19H+Ti is endothermic by 0.3 eV. These results suggest high reactivity of the adatom region on Ti(0001) but not such that the surface is more easily fragmented by removal of Ti or TiH.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday 相似文献
6.
Electrical,Optical, and Structural Properties of SnO2: F Films as a Function of Fluoride Precursor Concentration and Temperature 下载免费PDF全文
Atmospheric pressure chemical vapor deposition (APCVD) employing the precursor system of tin tetrachloride, ethyl formate, and 2,2,2‐trifluoroethyl trifluoroacetate vapors that were transported to hot glass substrates to deposit fluorine doped tin dioxide thin films. The system is optimized with respect to the substrate deposition temperature and to the amount of fluoride added to the precursor stream and the resultant structural, electrical and optical properties compared. Increasing the substrate temperature from 360 °C to 610 °C resulted in an approximately linear increase in thickness of the tin dioxide films. However, the resistivity decreased from 1.8 × 10–2 Ω · cm at 360 °C to a minimum of 5.9 × 10–4 Ω · cm at 560 °C and increased to 9.4 × 10–4 Ω · cm at 610 °C. While maintaining a substrate temperature of 560 °C different amounts of fluorine precursor was introduced into the carrier stream, from 0 mL · h–1 to 5 mL · h–1, resulting in a decrease in resistivity (ρ) from 5.3 × 10–2 Ω · cm at 0 mL · h–1 to a minimum of 5.9 × 10–4 Ω · cm at 2 mL · h–1 and then increased to 1.0 × 10–3 Ω · cm at 5 mL · h–1. As the amount of fluoride is increased a concommittent increase in carrier concentration results until the point of overdoping the film produces an increase in scattering sites that increases resistivity. Best films were deposited at 560 °C and when the fluoride precursor flow rate was 2 mL · h–1. 相似文献
7.
Density functional theory (DFT) was used to calculate the bulk electronic and optical properties of indium tin oxide (ITO). The ITO model was constructed replacing indium atoms with tin atoms in the cubic unit cell of indium oxide. To allow more possibilities for tin atom substitution than afforded by the forty-atom primitive cell of indium oxide all eighty atoms of the unit cell were included in the stoichiometry (In32−xSnxO48) using periodic boundary conditions. A number of properties of ITO were calculated including the optical band gap, charge carrier density and plasma frequency. The dependence of the electronic and optical properties of ITO on a variety of parameters such as the tin content, cubic lattice parameter and the distance between adjacent tin atoms was investigated. The electronic and optical properties agreed well with experimental data and allowed insight into the origin of the electronic and optical properties of ITO. 相似文献
8.
9.
G. Satishkumar 《Journal of solid state chemistry》2009,182(10):2822-608
The formation of polycrystalline tin oxide nanoparticles (NP) and nanowires was investigated using nanocasting approach included solid-liquid strategy for insertion of SnCl2 precursor and SBA-15 silica as a hard template. HR-TEM and XRD revealed that during the thermal treatment in air 5 nm tin oxide NP with well defined Cassiterite structure were formed inside the SBA-15 matrix mesopores at 250 °C. After air calcination at 700 °C the NP assembled inside the SBA-15 mesopores as polycrystalline nanorods with different orientation of atomic layers in jointed nanocrystals. It was found that the structure silanols of silica matrix play a vital role in creating the tin oxide NP at low temperature. The pure tin chloride heated in air at 250 °C did not react with oxygen to yield tin oxide. Tin oxide NP were also formed during the thermal treatment of the tin chloride loaded SBA-15 in helium atmosphere at 250 °C. Hence, it is well evident that silanols present in the silica matrix not only increase the wetting of tin chloride over the surface of SBA-15 favoring its penetration to the matrix pores, but also react with hydrated tin chloride according to the proposed scheme to give tin oxide inside the mesopores. It was confirmed by XRD, N2-adsorption, TGA-DSC and FTIR spectra. This phenomenon was further corroborated by detecting the inhibition of SnO2 NP formation at 250 °C after inserting the tin precursor to SBA-15 with reduced silanols concentration partially grafted with tin chloride. 相似文献
10.
二氧化钛纳米材料的非均相光催化本质及表面改性 总被引:1,自引:0,他引:1
非均相光催化过程是指多相多尺度体系在光辐射作用下发生的一个复杂的催化过程,被认为最有潜力解决环境污染和能源短缺问题的绿色及可再生的技术之一。在目前已经报道的各种非均相光催化剂中, TiO2纳米材料被证实是应用最广泛、光催化效果最好的催化剂,是当前国际材料、环境和能源等领域的研究前沿和热点,高性能TiO2基光催化材料的设计及改性一直是该领域的难点,其关键问题主要为:如何增强TiO2的表面光催化量子效率、促进光生载流子分离和拓展其可见光响应范围。尽管已经有很多关于TiO2光催化的综述,但大多综述集中在高性能TiO2的制备及各种改性策略研究,而对各种改性策略与光催化分子机理之间的关系阐述较少。为此,本文深入分析了TiO2纳米材料的非均相光催化本质并总结了各种表面改性策略。首先从热力学角度阐明TiO2的热力学能带能够确保其实现各种典型光催化反应(包括光催化降解、CO2还原及光解水),证实其广泛应用的可行性。然后,对TiO2光生载流子的动力学基础进行总结,证实快速的广生载流子复合以及较慢的表面化学反应动力学是限制其光催化活性提高的关键制约性因素。于此同时,对TiO2纳米材料的表面Zeta点位、超亲水性、超强酸光催化剂制备(表面羟基取代)等重要的表面化学性质也进行了详细阐述。从而可以初步得出如下结论:表面改性是设计高性能TiO2光催化材料的重中之重,并将各种改性策略浓缩在6个方面:表面掺杂和敏化,构建表面异质结,负载纳米助催化剂,增加可利用的比表面剂,利用表面氟效应以及暴露高活性晶面等。显然,表面掺杂和敏化可以减小TiO2纳米材料的禁带宽度,从而大幅拓宽其可见光吸收范围及光催化效率。而构建紧密的表面异质结可以创建界面电场,不仅可以促进光生电荷分离效率,而且可以有效提高界面电荷转移效率,最终实现异质结的高光催化效率。负载纳米助催化剂则可以大幅加快表面化学反速率,降低光生载流子的表面复合并增加其利用率,并有可能减少不期望的表面逆反应,从而实现光催化活性提升。增加可利用的比表面剂,可以有效提升光催化剂与吸附质之间的有效接触面积,缩短了载流子的传输距离以及通过多次反射与折射提升光能的利用率,从而全方位地提升TiO2纳米材料的光催化活性。对TiO2纳米材料表面进行氟化,可以增加光生羟基自由基的速率以及浓度,并可以通过调节TiO2表面酸碱性而控制其光催化选择性,从而实现高效高选择性光催化。最后,通过暴露TiO2纳米材料的高活性晶面,也可以促进光生载流子分离、增加吸附性能或羟基自由基生成速率,从而获得高光催化效率。另外,这些表面改性策略的协同效应仍是较有前景的TiO2纳米光催化剂改性技术,值得深入研究。同时,深入的光催化分子机理探索仍然是必须的,其不仅有助于发现影响TiO2纳米材料光催化活性提高的关键性制约因素,而且也可以指导开发新型的TiO2纳米光催化剂改性技术。总而言之,通过总结TiO2纳米材料在光催化、表面化学及表面改性等方面的重要进展,可为设计高效的TiO2基及非TiO2基光催化剂并应用于太阳燃料生产、环境修复、有机合成及相关的领域(如太阳能电池、热催、分离和纯化)等提供新的思路。 相似文献
11.
We review the recent achievements of photoelectron microscopy (PEM), which is a rapidly developing technique that is significantly advancing the frontiers of surface and materials science. The operation principles of scanning photoelectron microscopes (SPEM), using different photon optic systems to obtain a micro-probe of sub-micrometer dimensions, and of the full-field imaging microscope, using electrostatic lenses for magnification of the irradiated sample area, are presented. The contrast mechanisms, based on photon absorption and photon-induced electron emission, are described and the expected development in the photon and electron optics and detection systems are discussed. Particular attention is paid to the present state-of-art performance of the microscopes collecting photoelectrons (PEs), which carry specific information about the lateral variations in the chemical, magnetic and electronic properties of the material under investigation. Selected results, obtained recently with instruments installed at synchrotron light facilities, are used to illustrate the potential of PEM in characterising micro-phases and dynamic processes with a lateral resolution better than 100 nm. 相似文献
12.
A series of Co3O4-loaded SnO2 nanocomposite thick films were prepared by grinding, screen-printing and sintering at 700 ±C for 3 h. XRD data showed the nanocomposite thick films were rutile structure of SnO2 and cubic Co3O4. The composite films were found to exhibit good response to alcohol and acetone at 300 ±C. The film went through a sharp sensitivity maximum at 5 mol%CoO4=3 with a change in Co3O4 content. At 300 ±C, the maximum sensor response to alcohol and acetone, each 1000 ppm in air, was 301 and 235, respectively, which was about 7 and 5 times as large as that of the pure SnO2 respectively. The selectivity to alcohol and acetone over H2 and CO also was promoted by the addition of Co3O4 to SnO2. The mechanism of such strong promotion of sensor response (electronic sensitization) is discussed. 相似文献
13.
The surface characteristics of mixed zirconium and titanium oxides prepared from different starting materials are investigated.
One mode of preparation entailed the use of zirconium sulfate and titanium oxysulfate as starting materials and ammonium hydroxide
as precipitating agent. The produced oxides were washed to different extents to obtain samples with different sulfate content.
A second preparative mode used zirconium oxychloride and titanous chloride as starting materials also with ammonium hydroxide
as precipitating agent. The oxidation of the titanous to the titanic form for these oxides was carried out by means of oxygen
gas. Resulting samples were heat treated at 400 °C and 600 °C, and textural characteristics determined from the adsorption
of N2 at 77 K, complemented by infrared and thermal studies.
The samples precipitated from the oxychloride and chloride salts of zirconium and titanium, as well as those precipitated
from the sulfate and oxysulfate salts and washed free of the sulfate ions displayed quite similar textural characteristics.
The unheated samples and those heat-treated at 400 °C were mesoporous, with some microporosity, and relatively large surface
areas in the order of 200–300 m2/g. Heat treatment to 600 °C led to a relative decrease in surface area, in the order of 100 m2/g, and to the disappearance of microporosity.
The mixed zirconium and titanium oxides with a sulfate content of ≈17% displayed significantly lower surface areas, smaller
than 10 m2/g, with a prevalence of micro and mesoporosity. Infrared and thermal studies indicated the presence of differently bounded
sulfato groups, which seem to have a blocking effect on the pores, resulting in the observed smaller surface areas. 相似文献
14.
Nengqin Jia Qin Zhou Ling Liu Manming Yan Zhiyu Jiang 《Journal of Electroanalytical Chemistry》2005,580(2):213-221
Horseradish peroxidase (HRP) was immobilized into a new type of sol–gel-derived nano-sized tin oxide/gelatin composite film (SnO2 composite film) using a sol–gel film/enzyme/sol–gel film “sandwich” configuration. Direct electrochemistry and electrocatalysis of HRP incorporated into the composite films were investigated. HRP/SnO2 composite film exhibited a pair of stable and quasi-reversible cyclic voltammetric peaks for the HRP Fe(III)/HRP Fe(II) redox couple with a formal potential of about −0.25 V (vs. SCE) in a pH 6.0 phosphate buffer solution. The electron transfer between the enzyme and the underlying electrode was greatly enhanced in the microenvironment with nano-SnO2 particles and nanoporous structures. Morphologies and microstructures of the composite films and HRP/composite films were characterized with TEM, AFM. Electrochemical impedance spectroscopy (EIS) was also used to feature the HRP incorporated into composite films. FTIR and UV–Vis spectroscopy demonstrated that HRP in the composite film could retain its native secondary structure. With the advantages of organic–inorganic hybrid materials, the HRP/SnO2 composite film modified electrode displayed good stability and electrocatalytic activity to the reduction of H2O2, The apparent Michaelis-Menten constant was estimated to be 0.345 mM, indicating a high affinity of HRP entrapped into the composite film toward H2O2. 相似文献
15.
以普通硅胶为载体, 采用表面金属有机化学合成技术, 通过“一锅”反应制备了硅胶表面金属有机钛化合物, 然后经高温煅烧获得了硅胶表面氧化钛. 采用傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 热重分析(TG-DTA)及原子力显微镜(AFM)对硅胶表面金属有机钛化合物和表面氧化钛进行了结构表征. 结果表明, 高温煅烧过程中, 硅胶表面金属有机钛化合物不仅脱除了有机配体, 并且通氧使其表面“再生”羟基, 确保了钛的四配位形式不变; 氧化钛通过Si—O—Ti键锚定在硅胶表面, 呈分散、 孤立状态分布. 高温煅烧后, 硅胶的骨架结构保持完好. 相似文献
17.
Durrani SM 《Talanta》2006,68(5):1732-1735
Thin films of tin oxide were deposited by electron beam evaporation. The effects of the electrode materials (Ag, Al, Au and Pt) and different electrode configurations on the CO-sensing of tin oxide thin films were investigated. The Pt and Au electrodes with bottom electrode configuration show much higher response than Ag and Al electrodes. The sensor response and recovery times have also been measured. The films were characterized using X-ray diffraction and X-ray photoelectron spectroscopy. All the films were found to be amorphous. It was found that the CO-sensing properties depend both on the electrode materials and configuration. 相似文献
18.
In this review, some of the latest research developments on the characterization of the structure and properties of oxide materials by applying solid-state nuclear magnetic resonance spectroscopy (NMR), including the use of dynamic nuclear polarization (DNP) NMR, 17O NMR combined with surface selective labeling and 31P NMR coupled with phosphorous-containing probe molecules, are discussed. 相似文献
19.
P. Alvarez Boo J.S. Casas U. Casellato M.D. Couce E. Freijanes R. Graziani B. Salgado U. Russo J. Sordo 《Journal of organometallic chemistry》1997,530(1-2):141-148
Reaction of indazole (HInd) with diorganotin(IV) dihalides yielded compounds of the type [SnR2X2(HInd)2] (R = Me, Et, Bu and Ph; X = Cl, Br). The structures of the dihalodimethylbis(indazole)tin(IV) complexes were determined by X-ray crystallography. These are trans-octahedral centrosymmetric compounds with the following bond lengths (Å) around the tin atom: Sn-Cl 2.590(2), Sn-N 2.377(6), Sn-C 2.12(1) in the chloride; and Sn-Br 2.733(1), Sn-N 2.370(5) and Sn-C 2.12(1) in the bromide. Mössbauer and vibrational spectra suggest similar trans stereochemistry for the other complexes prepared. The behaviour of these compounds in solution was studied by conductimetry and NMR techniques. 相似文献
20.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas. 相似文献