首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The influence of intermolecular vibrational relaxation on dipole moment correlation functions, as obtained from IR band shapes, is discussed. It is explicitly shown that vibrational relaxation due to intermolecular interactions depends on the reorientational behaviour of the molecules in the liquid.Therefore, an a priori separation of the dipole moment correlation function into independent reorientational and vibrational factors is not generally possible. The implications for various procedures used to “correct” Raman and IR band shapes for vibrational relaxation are discussed.The expression derived for the intermolecular vibrational relaxation is used to calculate theoretically the effect of transition dipole-transition dipole coupling on dipole moment correlation functions.Experimental data obtained from isotopic dilution measurements support the interpretation of the isotopic dilution effect in terms of the transition dipole-transition dipole coupling.  相似文献   

2.
Fourier transform infrared spectra of the nu(s) (HF stretching) band of the (CH(2))(2)S-HF complex have been recorded at 0.1-0.5 cm(-1) resolution in a cooled cell, in a supersonic jet expansion seeded with argon and in a neon matrix at 4.5 K. The combination of controlled temperature effects over a range of 40-250 K and a sophisticated band contour simulation program allows the separation of homogeneous and inhomogeneous contributions and reveals significant anharmonic couplings between intramolecular and intermolecular vibrational modes similar to our previous work on (CH(2))(2)S-DF. The sign of the coupling constants is consistent with the expected strengthening of the hydrogen bond upon vibrational excitation of HF which also explains the observed small variations of the geometrical parameters in the excited state. The analysis of sum and difference combination bands involving nu(s) provides accurate values of intermolecular harmonic frequencies and anharmonicities and a good estimate of the dissociation energy of the complex. Frequencies and coupling parameters derived from gas phase spectra compare well with results from neon matrix experiments. The effective linewidth provides a lower bound for the predissociation lifetime of 10 ps. The comparison between effective linewidths and vibrational densities of states for (CH(2))(2)S-HF and -DF complexes highlights the important role of intramolecular vibrational redistribution in the vibrational dynamics of medium strength hydrogen bonds.  相似文献   

3.
《Liquid crystals》1999,26(7):1067-1078
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

4.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis-(4- n -octyloxybenzoyl)hydrazine, BABH(8), was investigated under pressures up to 200 MPa using a high pressure differential thermal analyser, wide-angle X-ray diffraction and a polarizing optical microscope equipped with a high pressure optical cell. The phase transition sequence, low temperature crystal (Cr 2 )-high temperature crystal (Cr 1 ) - cubic (Cub)-smectic C (SmC)-isotropic liquid (I) observed at atmospheric pressure, is seen in the low pressure region below about 30 MPa. The cubic phase disappears at high pressures above 30-40 MPa, in conjunction with the disappearance of the Cr 1 phase. The transition sequence changes to Cr 2 -SmC-I in the high pressure region. Since only the Cub-SmC transition line among all the phase boundaries has a negative slope (d T /d P ) in the temperature-pressure phase diagram, the temperature range for the cubic phase decreases rapidly with increasing pressure. As a result, a triple point was estimated approximately as 31.6 ±2.0 MPa, 147.0 ±1.0°C for the SmC, Cub and Cr 1 phases, indicating the upper limit of pressure for the observation of the cubic phase. Reversible changes in structure and optical texture between the Cub and SmC phases were observed from a spot-like X-ray pattern and dark field for the cubic phase to the Debye-Sherrer pattern and sand-like texture for the SmC phase both in isobaric and isothermal experiments.  相似文献   

5.
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

6.
We have studied the effects of intermolecular and intramolecular coupling on the C-O stretching vibration of CO adsorbed on Platinum (111) by means of femtosecond broadband vibrational sum frequency generation (VSFG). Resonant intermolecular coupling is investigated through the coverage dependence of the VSFG signal. The experimental observations can be accurately modeled as lateral coupling of the molecular transition dipole moments; this coupling is invoked in the nonlinear optical response model as a local field correction. The linear polarizability, which appears in this model, is modified by both the dipole-dipole coupling and the population of bridged adsorption sites. By extending the formalism to include these effects, we deduce a vibrational polarizability of 0.32 A(3) from the data. Intramolecular coupling to the frustrated translational mode is observed as temperature dependence of the C-O stretch. The present data can be described either by pertubative or nonpertubative lineshape models from the literature. Measurements of the temperature dependence of the vibrational free induction decay indicate a population relaxation time T(1) of (0.8+/-0.1) ps, in agreement with the observed low-temperature linewidth. Moreover, the ability of this time-domain method to discriminate spectral inhomogeneity yields clear evidence of the order-disorder transition near 275 K. Above this temperature an inhomogeneous linewidth component of (12+/-3) cm(-1) is observed. This value allows us to estimate the structural heterogeneity of the disordered phase, which result agrees with published Monte Carlo simulations.  相似文献   

7.
The reaction pathway for Ca(4s3d 1D2)+CH4-->CaH(X 2Sigma+)+CH3 has been investigated by using a pump-probe technique in combination with potential-energy surface (PES) calculations. The nascent product distributions of CaH have been characterized with Boltzmann rotational temperatures of 1013+/-102 and 834+/-70 K for the v=0 and 1 levels, respectively, and a Boltzmann vibrational temperature of 1313+/-173 K. The rotational and vibrational energy partitions in CaH have been estimated to be 461+/-45 and 252+/-15 cm(-1), respectively. According to the PES calculations, the pathway favors an insertion mechanism. Ca(3 1D2) approaches CH4 along an attractive potential surface in a C2v (or Cs) symmetry and then the collision complex undergoes nonadiabatic transition to the reactive ground-state surface. An Arrhenius plot shows a potential-energy requirement of 2695+/-149 cm(-1), which accounts for the endothermicity of 2930 cm(-1) for the reaction scheme. The Ca-C bond distance in the transition state structure is short enough to allow for tight orbital overlap between CaH and CH3. The strong coupling between the moieties renders the energy transfer sufficient from CaH into the CH3 radical. As compared to the Ca(4 1P1) reaction, the dissociation lifetime of the intermediate complex with less excess energy is prolonged so as to cause much less vibrational energy disposal into CaH.  相似文献   

8.
The polarized Raman spectrum and the time dependence of the transient infrared (TRIR) absorption anisotropy are calculated for the OH stretching mode of liquid water (neat liquid H2O) by using time-domain formulations, which include the effects of both the diagonal frequency modulations (of individual oscillators) induced by the interactions between the dipole derivatives and the intermolecular electric field, and the off-diagonal (intermolecular) vibrational coupling described by the transition dipole coupling (TDC) mechanism. The IR spectrum of neat liquid H2O and the TRIR anisotropy of a liquid mixture of H2O/HDO/D2O are also calculated. It is shown that the calculated features of these optical signals, including the temperature dependence of the polarized Raman and IR spectra, are in reasonable agreement with the experimental results, indicating that the frequency separation between the isotropic and anisotropic components of the polarized Raman spectrum and the rapid decay (approximately 0.1 ps) of the TRIR anisotropy of the OH stretching mode of neat liquid H2O are mainly controlled by the resonant intermolecular vibrational coupling described by the TDC mechanism. Comparing with the time evolution of vibrational excitations, it is suggested that the TRIR anisotropy decays in the time needed for the initially localized vibrational excitations to delocalize over a few oscillators. It is also shown that the enhancement of the dipole derivatives by the interactions with surrounding molecules is an important factor in generating the spectral profiles of the OH stretching Raman band. The time-domain behavior of the molecular motions that affect the spectroscopic features is discussed.  相似文献   

9.
Rotational analyses have been carried out for the overtones of the nu(4) (torsion) and nu(6) (in-plane cis-bend) vibrations of the A (1)A(u) state of C(2)H(2). The v(4)+v(6)=2 vibrational polyad was observed in high-sensitivity one-photon laser-induced fluorescence spectra and the v(4)+v(6)=3 polyad was observed in IR-UV double resonance spectra via the ground state nu(3) (Sigma(+) (u)) and nu(3)+nu(4) (Pi(u)) vibrational levels. The structures of these polyads are dominated by the effects of vibrational angular momentum: Vibrational levels of different symmetry interact via strong a-and b-axis Coriolis coupling, while levels of the same symmetry interact via Darling-Dennison resonance, where the interaction parameter has the exceptionally large value K(4466)=-51.68 cm(-1). The K-structures of the polyads bear almost no resemblance to the normal asymmetric top patterns, and many local avoided crossings occur between close-lying levels with nominal K-values differing by one or more units. Least squares analysis shows that the coupling parameters change only slightly with vibrational excitation, which has allowed successful predictions of the structures of the higher polyads: A number of weak bands from the v(4)+v(6)=4 and 5 polyads have been identified unambiguously. The state discovered by Scherer et al. [J. Chem. Phys. 85, 6315 (1986)], which appears to interact with the K=1 levels of the 3(3) vibrational state at low J, is identified as the second highest of the five K=1 members of the v(4)+v(6)=4 polyad. After allowing for the Darling-Dennison resonance, the zero-order bending structure can be represented by omega(4)=764.71, omega(6)=772.50, x(44)=0.19, x(66)=-4.23, and x(46)=11.39 cm(-1). The parameters x(46) and K(4466) are both sums of contributions from the vibrational angular momentum and from the anharmonic force field. For x(46) these contributions are 14.12 and -2.73 cm(-1), respectively, while the corresponding values for K(4466) are -28.24 and -23.44 cm(-1). It is remarkable how severely the coupling of nu(4) and nu(6) distorts the overtone polyads, and also how in this case the effects of vibrational angular momentum outweigh those of anharmonicity in causing the distortion.  相似文献   

10.
The importance of vibrational-to-electronic (V-E) energy transfer mediated by spin-orbit coupling in the collisional removal of O2(X 3Sigmag-,upsilon>or=26) by O2 has been reported in a recent communication [F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]. The present work provides details on the electronic properties of the dimer (O2)2 relevant to the self-relaxation of O2(X 3Sigmag-,upsilon>0) where V-E energy transfer involving the O2(a 1Deltag) and O2(b 1Sigmag+) states is incorporated. Two-dimensional electronic structure calculations based on highly correlated ab initio methods have been carried out for the potential-energy and spin-orbit coupling surfaces associated with the ground singlet and two low-lying excited triplet states of the dimer dissociating into O2(X 3Sigmag-)+O2(X 3Sigmag-), O2(a 1Deltag)+O2(X 3Sigmag-), and O2(b 1Sigmag+)+O2(X 3Sigmag-). The resulting interaction potentials for the two excited triplet states display very similar features along the intermolecular separation, whereas differences arise with the ground singlet state for which the spin-exchange interaction produces a shorter equilibrium distance and higher binding energy. The vibrational dependence is qualitatively similar for the three studied interaction potentials. The spin-orbit coupling between the ground and second excited states is already nonzero in the O2+O2 dissociation limit and keeps its asymptotic value up to relatively short intermolecular separations, where the coupling increases for intramolecular distances close to the equilibrium of the isolated diatom. On the other hand, state mixing between the two excited triplet states leads to a noticeable collision-induced spin-orbit coupling between the ground and first excited states. The results are discussed in terms of specific features of the dimer electronic structure (including a simple four-electron model) and compared with existing theoretical and experimental data. This work gives theoretical insight into the origin of electronic energy-transfer mechanisms in O2+O2 collisions.  相似文献   

11.
Salient features of an in-depth comparative study of infrared and Raman spectra of CCl(4) in vapour, liquid and condensed phases are presented. Wavenumbers of nu(4), nu(1)+nu(4), nu(3) and 2 nu(3) modes of CCl(4) vapour in infrared and Raman spectra are found to be in good agreement. Analysis of the vibrational spectra of liquid CCl(4) together with the spectroscopic observations on solid CCl(4) at low temperatures reveal TD-TD interaction amongst various CCl(4) isotopes in condensed states. The concept of LO-TO splitting of dipole active nu(3) and nu(1)+nu(4) Fermi doublet have been invoked to explain several features of the vibrational spectra of liquid CCl(4). There is significant strengthening of Fermi resonance interaction between nu(3) and nu(1)+nu(4) modes of CCl(4) in condensed phases relative to that in vapour phase. The Fermi resonance interaction parameter W has been found to be independent of molecular environment.  相似文献   

12.
《Liquid crystals》2001,28(12):1785-1791
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

13.
14.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis(4-n-decyloxybenzoyl)hydrazine, BABH(10), was investigated under pressures up to 300 MPa using a high pressure differential thermal analyser, a wide angle X-ray diffractometer and a polarizing optical microscope (POM) equipped with a high pressure optical cell. The reversible change in structure and optical texture between the cubic (Cub) and smectic C (SmC) phases was associated with a change from a spot-like X-ray pattern and dark field for the Cub phase to the Debye-Sherrer ring pattern and sand-like texture for the SmC phase under both isobaric and isothermal conditions. The Cub phase was found to disappear at pressures above about 11 MPa. The phase transition sequence, low temperature crystal (Cr3)-intermediate temperature crystal (Cr2)-high temperature crystal (Cr1)-Cub-SmC-isotropic liquid (I) observed at atmospheric pressure, is maintained in the low pressure region below 10 MPa. The transition sequence changes to Cr3-Cr2-(Cr1)-SmC-I in the high pressure region. Since the Cub-SmC transition line determined by POM has a negative slope (dT/dP) in the T-P phase diagram, a triple point is estimated approximately at 10-11 MPa, and 143-145°C for the SmC, Cub and Cr1 phases, giving the upper limit of pressure for the observation of the cubic phase.  相似文献   

15.
The coupling between the OD stretch v=2 level and benzene-ring modes in 2-methoxyphenol-OD (hydroxyl H replaced by D) is observed with ultrafast two-dimensional (2D) IR vibrational echo spectroscopy. Because of this coupling, the 1-2 transition peak in the 2D spectrum is split into a doublet with peaks of approximately equal amplitudes. Several molecules and solvents were used to study this phenomenon. Near-IR (NIR) spectroscopy measurements and density-functional theory calculations (B3LYP6-31+G(d,p) level) were also applied. Experimental results and calculations show that the OD stretch 1-2 transition is coupled to a combination band related to the benzene-ring motions. A simple quantum-mechanical model indicates that the combination band has a frequency of 5172 and 5176.5 cm(-1) in CCl4 and hexane, respectively. The transition between this combination band and the ground state is too weak to detect by NIR. The transition between this band and the OD stretch first excited state is also so weak that most of the intensity of the doublet comes from the oscillator strength produced by coupling to the OD stretch. The model gives the coupling strengths as 6.5 and 7 cm(-1) in CCl4 and hexane, respectively.  相似文献   

16.
The pressure evolution of the vibrational spectrum of polyethylene was investigated up to 50 GPa along different isotherms by Fourier-transform infrared and Raman spectroscopy and at 0 K by density-functional theory calculations. The infrared data allow for the detection of the orthorhombic Pnam to monoclinic P2(1)∕m phase transition which is characterized by a strong hysteresis both on compression and decompression experiments. However, an upper and lower boundary for the transition pressure are identified. An even more pronounced hysteresis is observed for the higher-pressure transition to the monoclinic A2/m phase. The hysteresis does not allow in this case the determination of a well defined P-T transition line. The ambient structural properties of polyethylene are fully recovered after compression/decompression cycles indicating that the polymer is structurally and chemically stable up to 50 GPa. A phase diagram of polyethylene up to 50 GPa and 650 K is proposed. Analysis of the pressure evolution of the Davydov splittings and of the anomalous intensification with pressure of the IR active wagging mode provides insight about the nature of the intermolecular interactions in crystalline polyethylene.  相似文献   

17.
We report the quality anisotropic intermolecular vibrational spectra within the frequency range 0.5-800 cm(-1) of four C(3v) CXY(3) molecular liquids, CHCl(3), CHBr(3), CFBr(3), and CBrCl(3), by means of femtosecond optical-heterodyne-detected Raman-induced Kerr effect spectroscopy. The results show that the first moment of the intermolecular vibrational spectrum is proportional to the square root of the value of the surface tension divided by the liquid density. This implies that the intermolecular vibrational spectrum reflects the bulk properties of the liquids. To understand the molecular-level aspects of the intermolecular vibrational spectra of the liquids, the spectra are compared with the molecular properties such as molecular weight, rotational constants, and bimolecular interaction energy. Overall, the first moment of the spectrum moderately correlates to the inverse square roots of both the molecular weight and the fast rotational constant. Therefore, the molecular properties are responsible for the intermolecular vibrational spectrum. Plots of the first moment of the intermolecular vibrational spectrum vs the square root of the value of the simple bimolecular interaction energy divided by the molecular surface area and the molecular weight show a linear correlation in the case of the oblate symmetric top molecular liquids, CHCl(3), CHBr(3), and CFBr(3). However, CBrCl(3), which is a prolate symmetric top molecular liquid, does not show the same correlation for the oblate molecular liquids.  相似文献   

18.
The distribution of rotational and vibrational energy in HCO produced by the O((3)P)+C(2)H(4) reaction has been measured using laser-induced fluorescence detection via the B(2)A(')-X(2)A(') transition. Over a detection wavelength range of 248-290 nm, our experiments have shown that HCO is formed in both the ground state and in at least six vibrationally excited states with up to two quanta of energy in the C-O stretch and the bending mode. Dispersed fluorescence experiments were conducted to positively assign all of the HCO vibrational bands. The experiments confirmed that many bands, including the B(000)-X(000) band, are affected by overlap with other HCO bands. Spectral modeling was used to separate the contributions of overlapping HCO B-X bands and to determine a nascent HCO rotational temperature of approximately 600 K, corresponding to approximately 6% of the total energy from the O((3)P)+C(2)H(4) reaction. HCO vibrational distributions were determined for two different average collision energies and were fit with vibrational temperatures of 1850+/-80 K and 2000+/-100 K, corresponding to approximately 15% of the total energy. The observed Boltzmann distribution of vibrational energy in HCO indicates that HCO and CH(3) are formed by the dissociation of an energized intermediate complex.  相似文献   

19.
The temperature (T)—pressure (P) phase diagrams of aqueous solutions of a homologous series of cationic surfactants, tetradecyl- (C14TAB), hexadecyl- (C16TAB), and octadecyltrimethylammonium bromide (C18TAB), have been determined by observing the sudden change of the transmittance accompanying the phase transition under high pressure up to 160 MPa. Regarding three kinds of phase transitions which have been previously assigned by the differential scanning calorimetry (DSC) (S. Kaneshina and M. Yamanaka, J. Colloid Interface Sci.131, 493, 1989), all the transition temperatures were linearly elevated by applying pressure. The volume changes associated with the transitions were estimated from the Clapeyron—Clausius equation by using the values of the T—P slopes on the phase diagrams and of the transition entropies taken from the DSC study. A chemical potential vs pressure profile, of which slope reflects the partial molar volume, among the states of surfactant assemblies, i.e., micelle, gel, and coagel, was drawn schematically on the basis of the transition volumes. The phase boundary between the coagel phase and the micellar solution should be the critical solution line of the surfactant, representing the pressure dependence on the Krafft temperature. In the C18TAB-water system, the phase boundary line between the metastable gel and the supercooled micelle had a break point at 45 MPa, suggesting the existence of a new pressure-induced mesophase above 45 MPa. The metastable gel phase of C14TAB disappeared in the pressure range up to 160 MPa.  相似文献   

20.
The mechanisms of the C(3P)+H 2S→HCS+H and C(3P)+H 2S → HSC+H reactions have been studied at the UMP2/6-31G(d,p),UMP2/6-311G(d,p),and G2 levels, and six transition states and three intermediates have been located along the reaction paths. The predicted path for the C(3P)+H2S→HCS+H reaction is: C(3P)+H2S→IM1→TS1→IM2→TS4→HCS+H, in line with the reaction process suggested by Lee et al. [1] in which only the intermediates were given. Our energetic results indicate that the C(3P)+H2S→HCS+H reaction is more favorable than the C(3P)+H 2S→HSC+H reaction, in agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号