首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
提出一种由三导体同轴线构成的脉冲形成线技术方案,利用中筒改善内外筒间电场分布,提高平均场强,从而获得更高的形成线电压及储能。利用双次级Tesla变压器为形成线充电,简单分析了电路特点及次级电压波形,给出两个筒间隙电压达到恰当比例对应的充电时间。通过优化内筒、中筒半径,得到形成线电压和储能曲线,结果表明:外筒半径固定时,形成线电压和储能均存在最大值。特别分析了有效储能问题,给出了有效储能曲线和能量效率曲线。  相似文献   

2.
介绍了一种水介质脉冲形成线强流电子束加速器的输出开关的设计和实验结果。水介质脉冲形成线为单同轴螺旋结构,阻抗约9 Ω,充电电压为1.2 MV,匹配负载输出电压600 kV,脉冲宽度100 ns,形成线长度1.1 m,最大外径35 cm。输出开关采用简单的自击穿火花开关形式,主要采用了以下设计原则:(1)电极间隙的场增强因子小于1.4,使SF6的击穿电压 压强曲线尽可能线性;(2)电极间平均场强300 kV/cm,大于材料沿面界面场强的3倍以上,避免发生沿面闪络;(3)控制各结合点的场强,使其小于30 kV/cm;(4)减少开关室的体积,以保证最大的机械强度。该开关结构紧凑,总长度为12 cm,电感小于100 nH、击穿电压和气压的线性关系好,可在0.3~1.2 MV的较宽范围内调节。实验中开关运行稳定可靠,达到了设计要求。  相似文献   

3.
中国科学院高能物理研究所正在进行环形正负电子对撞机-超级质子对撞机(CEPC-SPPC)的研究工作,未来超级质子对撞机(SPPC)初期要求的主环二极磁体磁场强度为12 T,升级后的磁体场强需求为20~24 T.为了达到15 T及以上的场强,高温超导线材制作的内插高场线圈是目前的唯一选择.本文对YBCO内插线圈做了相应的探究,并提出的一种新的设计方案,具有以下特点:线圈结构采用Common-coil与Block-type混合的设计,并解决了端部弯曲半径小的问题;充分利用YBCO在高场下磁场与超导带材平行时临界电流密度是垂直情况下的数倍特性,通过优化端部结构减小线材与磁场夹角;计算了不同形状及弯曲半径组合下的线材弯曲情况,综合考虑了端部长度与线材张力之间相互制约的问题,并给出了最终结果;试绕了两种端部的铜线圈,以及balloon-end的高温超导YBCO线圈并进行了测试.  相似文献   

4.
300kV的虚火花放电实验   总被引:4,自引:1,他引:3       下载免费PDF全文
 介绍了用脉冲线加速器作驱动电源产生高压虚火花放电的实验。脉冲线加速器由十级马克斯发生器和改装的脉冲形成线构成, 虚火花放电室中注入低气压氮气, 在300kV的放电电压下获得药10kA的高亮度电子束。  相似文献   

5.
紧凑型MV级强流加速器输出开关   总被引:2,自引:2,他引:0       下载免费PDF全文
 介绍了一种水介质脉冲形成线强流电子束加速器的输出开关的设计和实验结果。水介质脉冲形成线为单同轴螺旋结构,阻抗约9 Ω,充电电压为1.2 MV,匹配负载输出电压600 kV,脉冲宽度100 ns,形成线长度1.1 m,最大外径35 cm。输出开关采用简单的自击穿火花开关形式,主要采用了以下设计原则:(1)电极间隙的场增强因子小于1.4,使SF6的击穿电压 压强曲线尽可能线性;(2)电极间平均场强300 kV/cm,大于材料沿面界面场强的3倍以上,避免发生沿面闪络;(3)控制各结合点的场强,使其小于30 kV/cm;(4)减少开关室的体积,以保证最大的机械强度。该开关结构紧凑,总长度为12 cm,电感小于100 nH、击穿电压和气压的线性关系好,可在0.3~1.2 MV的较宽范围内调节。实验中开关运行稳定可靠,达到了设计要求。  相似文献   

6.
 提出了一种结构紧凑的长脉冲发生器,该发生器的螺旋型形成线包含有磁性材料构成的内导体棒和外屏蔽。形成线通过内置的高耦合Tesla变压器充电,变压器的初级线圈紧靠外磁芯导体,次级线圈位于螺旋中筒和外筒之间。对这种结构的螺旋线进行了特征参数的理论计算和波传输数值模拟,并进行了简单的原理验证实验。实验结果表明:这种设计是合理的、可行的。  相似文献   

7.
丝电爆过程的电流导入机理   总被引:1,自引:0,他引:1       下载免费PDF全文
毕学松  朱亮  杨富龙 《物理学报》2012,61(7):78105-078105
丝电爆制备纳米粉时, 电流从电极导入金属丝的过程直接影响电极烧损和粉末中微米级大颗粒产生. 分别通过接触和气体放电两种方式导入电流进行电爆试验. 结果表明, 光测量装置检测到的丝端部光电流几乎与回路放电电流同时产生, 而中间位置的光电流则要滞后一段时间; 由探针收集的产物确定, 金属丝端部主要形成熔融粒子, 中间部分主要形成气相粒子. 分析可知, 接触方式导入电流时, 丝端部也存在气体放电现象, 大电流主要通过气体放电形成的等离子体导入. 等离子体对电流的旁路作用会阻碍能量向金属丝沉积, 这是产生微米级大颗粒和"积瘤"主要原因. 通过气体放电方式导入电流时, 电极烧损明显减轻, 并可以避免"积瘤"产生.  相似文献   

8.
建筑物对不同体制电磁脉冲时域响应数值分析   总被引:3,自引:3,他引:0       下载免费PDF全文
 针对一般建筑物内空间电场强度时域变化特点,采用时域有限差分方法,数值模拟单极性高斯脉冲、双极性微分高斯脉冲以及窄带调制方波脉冲平面波在建筑物内传播、反射及透射过程;并对比分析不同脉冲参数对空间场强最大值及分布的影响。在一定脉冲宽度的微分高斯脉冲激励下,建筑物空间内最大场强变化范围值较高,为3.0~5.5 dB,其空间场强增强分布区域较大,并随脉宽增加而减小,但脉冲的最小重复频率相对要求最高。相应脉宽的高斯脉冲造成空间最大场强及分布区域范围最小,而脉冲的最小重复频率所需最低。当载频为房间谐振频率的窄带脉冲入射下,空间最大场强变化范围值相对最高,空间场强增强区域总体趋势随脉冲载频频率单调增加。  相似文献   

9.
提出了一种结构紧凑的长脉冲发生器,该发生器的螺旋型形成线包含有磁性材料构成的内导体棒和外屏蔽。形成线通过内置的高耦合Tesla变压器充电,变压器的初级线圈紧靠外磁芯导体,次级线圈位于螺旋中筒和外筒之间。对这种结构的螺旋线进行了特征参数的理论计算和波传输数值模拟,并进行了简单的原理验证实验。实验结果表明:这种设计是合理的、可行的。  相似文献   

10.
介绍了用脉冲线加速器作驱动电源产生高压虚火花放电的实验。脉冲线加速器由十级马克斯发生器和改装的脉冲形成线构成, 虚火花放电室中注入低气压氮气, 在300kV的放电电压下获得药10kA的高亮度电子束。  相似文献   

11.
 介绍了Tesla变压器与脉冲形成线一体化结构的工作原理,实验研究了形成线放电过程中形成的冲击电压波在Tesla变压器锥形次级绕组中的分布特性;给出了输入电压脉宽分别为1 μs,500 ns和100 ns时,锥形绕组中的对地电压和匝间电压分布规律;采用首端并绕、末端并绕和在首端加入屏蔽环三种措施优化绕组结构。结果表明:形成线放电过程中,变压器锥形次级绕组不会明显影响形成线中的电场分布,绕组的对地电压呈线性分布,匝间电压曲线起伏剧烈,首端电压梯度最大;三种优化措施都能抑制电压振荡,首端并绕对降低绕组首端电压梯度最为有效,末端并绕对降低绕组末端电压梯度最有效。  相似文献   

12.
介绍了Tesla变压器与脉冲形成线一体化结构的工作原理,实验研究了形成线放电过程中形成的冲击电压波在Tesla变压器锥形次级绕组中的分布特性;给出了输入电压脉宽分别为1 μs,500 ns和100 ns时,锥形绕组中的对地电压和匝间电压分布规律;采用首端并绕、末端并绕和在首端加入屏蔽环三种措施优化绕组结构。结果表明:形成线放电过程中,变压器锥形次级绕组不会明显影响形成线中的电场分布,绕组的对地电压呈线性分布,匝间电压曲线起伏剧烈,首端电压梯度最大;三种优化措施都能抑制电压振荡,首端并绕对降低绕组首端电压梯度最为有效,末端并绕对降低绕组末端电压梯度最有效。  相似文献   

13.
设计了一种全固态高压重频方波脉冲发生器,主要由Marx发生器、脉冲形成线和磁开关构成。Marx发生器通过电感对脉冲形成线进行充电,将其充电至所需电压水平;当脉冲形成线充电至峰值电压时,磁开关饱和;脉冲形成线通过饱和的磁开关对匹配负载进行放电,在负载上形成一个高压方波脉冲。串入电感与磁开关相互匹配,不仅直接影响放电过程,同时也决定着磁开关需承受的伏秒数和负载上的预脉冲大小。介绍了Marx发生器和磁开关的设计,在单次和5 kHz重复频率下分别进行实验。在50 的匹配电阻负载上,获得电压幅值为12.5 kV、电流幅值为250 A、上升时间为46 ns、脉宽为220 ns的方波脉冲。对放电过程进行了PSPICE仿真模拟,仿真结果与实验结果匹配良好。  相似文献   

14.
饶俊峰  姜松  李孜 《强激光与粒子束》2016,28(5):055005-134
设计了一种全固态高压重频方波脉冲发生器,主要由Marx发生器、脉冲形成线和磁开关构成。Marx发生器通过电感对脉冲形成线进行充电,将其充电至所需电压水平;当脉冲形成线充电至峰值电压时,磁开关饱和;脉冲形成线通过饱和的磁开关对匹配负载进行放电,在负载上形成一个高压方波脉冲。串入电感与磁开关相互匹配,不仅直接影响放电过程,同时也决定着磁开关需承受的伏秒数和负载上的预脉冲大小。介绍了Marx发生器和磁开关的设计,在单次和5kHz重复频率下分别进行实验。在50Ω的匹配电阻负载上,获得电压幅值为12.5kV、电流幅值为250A、上升时间为46ns、脉宽为220ns的方波脉冲。对放电过程进行了PSPICE仿真模拟,仿真结果与实验结果匹配良好。  相似文献   

15.
The EAST transient electric field measurement system is designed for detecting the distribution and intensity of the transient electric field while the EAST is discharging, and can provide the basis for electromagnetic compatibility (EMC) design. It is composed of monopole electric-field probe, photoelectric isolation device, NI data acquisition equipment and software developed on LabVIEW to deal with the data. By testing, it can make synchronous data acquisition with sixteen analog channels, 20MHz sampling rate and up to 650MB⋅s-1 throughput separately, which is able to meet the demand of acquiring, processing and storing the real-time data in the high-frequency analog signals multi-channel mode.  相似文献   

16.
EAST 瞬态电场测量系统检测放电时 EAST 装置周围的瞬态电场分布及强度,为电磁兼容(EMC)设 计提供依据。该系统由单极子电场探头、光电隔离设备、NI 数据采集设备构成硬件平台,利用 LabVIEW 进行软 件编程,对采集的数据进行处理。经过测试,该系统可实现 16 个模拟通道、20MHz 采样率同步数据采集,高达 650MB⋅s−1 的数据吞吐量,满足了高频模拟信号的多通道实时数据采集,处理和存储要求。  相似文献   

17.
研制了一种基于直线变压器技术的脉冲功率系统,采用水介质脉冲形成线并联充电作为脉冲形成装置。分析了给形成线充电时泄漏电阻对充电电压效率和能量效率的影响,给出了泄露电阻的能量损耗率计算公式;结合实验参数计算了本实验中水介质形成线的泄漏电阻,介于8.2 kΩ与3 kΩ之间。根据泄露电阻取值范围,分析了双模块和四模块实验中水介质形成线充电过程中的电压效率与能量效率,结果表明水介质形成线的能量损失占其获得能量的5%~12%;计算结果同时表明:随着实验模块数增加,能量损失逐渐增大。  相似文献   

18.
水介质形成线泄漏电阻对充电效率的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
研制了一种基于直线变压器技术的脉冲功率系统,采用水介质脉冲形成线并联充电作为脉冲形成装置。分析了给形成线充电时泄漏电阻对充电电压效率和能量效率的影响,给出了泄露电阻的能量损耗率计算公式;结合实验参数计算了本实验中水介质形成线的泄漏电阻,介于8.2kΩ与3kΩ之间。根据泄露电阻取值范围,分析了双模块和四模块实验中水介质形成线充电过程中的电压效率与能量效率,结果表明水介质形成线的能量损失占其获得能量的5%~12%;计算结果同时表明:随着实验模块数增加,能量损失逐渐增大。  相似文献   

19.
通过求解电磁波束包络方程和能量方程的耦合方程组,考虑温度对材料介电系数的影响及传输损耗产热的耦合作用,求解了复合热边界条件下光纤的基模态传输和损耗问题。研究表明:随着纤芯半径的增大,电场强度、能量耗散密度减小,传播常数增大;环境温度降低、对流换热系数增大和表面发射率升高都会使得传播常数减小,电场强度、能量耗散密度增大;能量耗散密度和电场强度随截面曲率的变化并不是线性的,还受到其他因素的共同作用。  相似文献   

20.
提出了一种螺旋线重入结构的脉冲形成线,可实现多倍脉宽输出。该结构由储能外线和重入内线组成;重入内线的外屏蔽圆筒内表面呈阶梯状,内筒为均匀螺旋线结构,实现简单;储能外线与Tesla变压器一体化。结合采用螺旋重入和二级重入结构,给出了一组10 GW功率、百ns脉宽的重入型脉冲形成线设计,形成线采用Midel 7131合成酯绝缘介质,外筒内径1 m,长度2 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号