首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Oxidation of 2-amino-6-chloropurine to the 3-oxide provided a convenient intermediate for the synthesis of 2-amino-6-substituted purine 3-oxides, including the previously unavailable 2,6-diaminopurine 3-oxide. Thiation of the 6-halogen was accompanied by reduction of the N-oxide. The properties of the 1- and 3-oxides of 2,6-diaminopurine are compared.  相似文献   

2.
Natural Occurrence of Photocitrals and some of their Derivatives (Constituents of Verbena Oil, 1st communication). The analysis of natural verbena oil of authentic origin has revealed the presence of the synthetically known photocitral isomers 2a , 2b , 3 and 6 . They are accompanied by 2,5-dimethyl-2-vinyl-4-hexenal ( 7 ), several oxides 8–12 and some other constituents well known to occur in nature. A new sesquiterpene ether will be discussed in the following publication. The corresponding reduced compounds 15a , 15b and 16 of the photocitral isomers are also present in the essential oil.  相似文献   

3.
The tricyclic nucleoside 8-amino-4-methylthio-6-methyl-2-(β-D-ribofuranosyl)-1,2,3,5,6,7-hexaazaacenaphthylene ( 3 ) was synthesized from 3-cyano-4,6-bis(methylthio)-1-(β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidine ( 1 ). Attempts to synthesize 8-amino-6-methyl-2-(β-D-ribofuranosyl)-1H-2,6-dihydro-1,2,3,5,6,7-hexaazaacenaphthylene ( 5 ) ([an aza analog of 6-amino-4-methyl-8-(β-D-ribofuranosyl)-1,3,4,5,8-pentaazaacenaphthylene (TCN)], which is a potent antitumor agent), by the treatment of 3 with Raney nickel did not afford the desired aza analog of TCN. Instead, it was established that a reductive cleavage of the pyridazine moiety of 3 had occurred to give 4-methylamino-6-methylthio-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-3-carboxamidine ( 6 ). Assuming that solubility was a problem in the reductive step, the isopropylidene derivative of 3 , 8-amino-6-methyl-4-methylthio-2-(2,3-O-isopropylidene-β-D-ribofuranosyl)-2,6-dihydro-1,2,3,5,6,7-hexaazaacenaphthylene ( 8 ), was treated with Raney nickel, only to observe that a similar reductive ring cleavage of 8 had occurred to afford 4-methylamino-6-methylthio-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-3-carboxamidine ( 10 ) and 4-methylamino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-3-carboxamidine ( 11 ). Structural assignments for all products were established by physico-chemical procedures.  相似文献   

4.
A reaction of 3,6-di(tert-butyl)-1,2-benzoquinone with alkynes in the presence of phosphorus trichloride leads to a predominant formation of 4-alkyl- and 4-haloalkyl-5,8-di(tert-butyl)-2,6-dichloro-2 H- benzo[e][1,2]oxaphosphinine 2-oxide. An ipso-substitution of the tert-butyl group at ortho-position to the oxygen atom of the benzophosphinine system with the formation of 4-alkyl-5- tert-butyl-2,8-dichloro-2 H-benzo[e][1,2]oxaphosphinine 2-oxide was the minor route of the reaction with alkylacetylenes. Molecular structures of 4-butyl-5,8-di( tert-butyl)-2,6-dichloro-2 H- benzo[e][1,2]oxaphosphinine 2-oxide and 5,8-di( tert-butyl)-2,6-dichloro-4-hexyl-2 H-benzo[e][1,2]oxaphosphinine 2-oxide were studied by X-ray analysis.  相似文献   

5.
Occurrence of New Bifunctional Esters In Roman Camomile Oil (Anthemis nobilis L .) Some novel aliphatic esters of the unusual 3-hydroxy-2-methylidenebutyric acid have been found in the commercially available essential oil. Additionally, esters of (Z)-2-methyl-2-butenoic acid of structurally similar diols or other bifunctional alcohols have also been identified. Spectral data as well as a synthetic approach to the new esters of 3-hydroxy-2-methylidenebutyric acid are given.  相似文献   

6.
A new route was employed to synthesize methyl 6-ehlorofuro[2,8-b]pyridine-2-earboxylate by eoneurrent dehydrohalogenation and dehydration of 3-ehloro-3-(β,β-dichloro-β-ethoxycar-bonylelhyl)-2,6-piperidinedione using methyl phosphonyl chloride.  相似文献   

7.
Convenient methods for the preparation of 9-(β-D-ribofuranosyl) derivatives of 8-(2- and 3-thienyl)-2,6-diaminopurine and of 8-(2- and 3-furyl)-2,6-diaminopurine, which are potential antiviral agents has been worked out. The key step was a Pd(0)-catalyzed Stille coupling between 2- and 3-tributylstannylthiophene and 2- and 3-tributylstannylfuran and trimethylsilyl protected 9-(β-D-ribofuranosyl)-2,6-diamino-8-bro-mopurine. The use of N,N-dimethylformamide as solvent at 110° and dichloro(diphenylphosphine-propane)palladium(II) [PdC12(dppp)] with cupric oxide as co-reagent was essential in order to obtain a fast reaction and high yields.  相似文献   

8.
β-Sinensal (2,6-dimethyl-10-methylene-dodeca-2,6,11-trienal) was synthesized from the diene-aldehyde 5 . This was converted into the trans- and cis-triene-aldehydes 16 and 17 , which were condensed with the phosphorane 18 to give the corresponding two geometrical isomers ( 3 and 19 ) of β-sinensal.  相似文献   

9.
Reaction of phosphorus oxychloride with 2,6-dimethylpyridine N-oxide hydrochloride ( 1 ) gave a mixture of 2-(chloromethyl)-6-methylpyridine ( 2 ) and 4-chloro-2,6-dimethylpyridine ( 3 ). Treatment of this mixture with triethylamine converted 2 to the quaternary salt 4 which was separated by water extraction leaving 3 which was subsequently reacted with trimethylstannyl sodium to yield 2,6-dimethyl-4-(trimethylstannyl)pyridine ( 6 ).  相似文献   

10.
Abstract

10-O-(R/S)Tetrahydropyranosyl-β-rhodomycinone (5a,b) was prepared via 7,9-O-phenylboronyl-β-rhodomycinone (3) from β-rhodomycinone (1). Glycosidation of 5a,b with 3,4-di-O-acetyl-1,5-anhydro-2,6-dideoxy-L-arabino-hex-1-enitol (3,4-di-O-acetyl-L-rhamnal) (6) and 3,4-di-O-acetyl-1,5-anhydro-2,6-dideoxy-L-lyxo-hex-1-enitol (3,4-di-O-acetyl-L-fucal) (7) using N-iodosuccinimide gave the corresponding 7-O-glycosyl-β-rhodomycinones 8a,b, 9a,b and 10a,b, 11a,b. After cleavage of the THP-ether and O-deacetylation 7-O-(2,6-dideoxy-2-iodo-α-L-manno-hexopyranosyl)-β-rhodomycinone (14) and 7-O-(2,6-dideoxy-2-iodo-α-L-talo-hexopyranosyl)-β-rhodomycinone (16) were obtained.  相似文献   

11.
The synthesis of C-glycosidic analogues 15–22 of N4-(2-acetamido-2-deoxy-β-D -glucopyranosyl)-L -asparagine (Asn(N4GlcNAc)) possessing a reversed amide bond as an isosteric replacement of the N-glycosidic linkage is presented. The peptide cyclo(-D -Pro-Phe-Ala-CGaa-Phe-Phe-) (CGaa = C-glycosylated amino acid; 24 ) was prepared to demonstrate that 3-[(3-acetamido-2,6-anhydro-4,5,7-tri-O-benzyl-3-deoxy-β-D -glycero-D -guloheptonoyl)amino]-2-[(9H-fluoren-9-yloxycarbonyl)amino]propanoic acid ( 22 ) can be used in solid-phase peptide synthesis. The conformation of 24 was determined by NMR and molecular-dynamics (MD) techniques. Evidence is provided that the CGaa side chain interacts with the peptide backbone. The different C-glycosylated amino acids 15–21 were prepared by coupling 3-acetamido-2,6-anhydro-4,5,7-tri-O-benzyl-3-deoxy-β-D -glycero-D -gulo-heptonic acid ( 4 ) with diamino-acid derivatives 8–14 in 83–96% yield. The synthesis of 4 was performed from 2-(acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-D -glucopyranosyl) tributylstannane ( 2 ) by treatment with BuLi and CO2 in 83% yield. Similarly, propyl isocyanat yielded the glycoheptonamide 7 in 52% from 2 . Compound 2 was obtained from 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D -glucopyranose ( 1 ) by chlorination and addition of tributyltinlithium in 74% yield. A procedure for a multigram-scale synthesis of 1 is given.  相似文献   

12.
Two α,β-unsaturated thiolactones, 5-(2-propynyl)-2(5H)-thiophenone (5) and 3,5-di(2-propenyl)?2(5H)-thiophenone (6) , were newly synthesized. Irradiation (λ = 300 nm) of 5 in MeOH containing cyclopentene afforded a 3:1 mixture of diasteroisomeric methyl 7-thiatricyclo[6.4.0.02,6]dodec-10-ene-12-carboxylates (8a/8b) , while irradiation of 6 in MeOH saturated with 2-methylpropene gives a 3:2 mixture of diastereoisomeric methyl 3,3,9-trimethyl-5-thiatricyclo[6.2.1.02,6]undecane-1-carboxylates ( 10a / 10b ).  相似文献   

13.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 4a with methyl or phenyl isothiocyanate gave 6-chloro-2-[1-methyl-2-(N-methylthiocarbamoyl)hydrazino]quinoxaline 4-oxide 7a or 6-chloro-2-[1-methyl-2-(N-phenylthiocarbamoyl)hydrazino]quinoxaline 4-oxide 7b , respectively, whose reaction with dimethyl acetylenedicarboxylate afforded 6-chloro-2-[N-methyl-N-(5-methoxycarbonylmethylene-3-methyl-4-oxo-2-thioxoimidazolidin-1-yl)]aminoquinoxaline 4-oxide 8a or 6-chloro-2-[N-methyl-N-(5-methoxycarbonylmethylene-4-oxo-3-phenyl-2-thioxoimidazolidin-1-yl)]aminoquinoxaline 4-oxide 8b , respectively.  相似文献   

14.
The syntheses of four new β-cyclodextrin-hexasiloxane copolymers from heptakis(2,3-di-O-methyl)-β-cyclodextrin (2) by multi-step processes are described. 6A,6C-Di-O-[p,p'-methylenebis(benzenesulfonyl)]hetakis(2,3-di-O-methyl)β-cyclodextrin (3) , which was prepared by the reaction of 2 with p,p'-methylenebis-(benzenesulfonyl chloride), is a key intermediate for the preparation of permethylated 6A,6C-bisalkenyl-β-cyclodextrins 5, 6 , and 9. Permethylated 6A,6C-bissulfonate ester 4 , which was obtained from 3 by a methylation reaction under mild conditions, was reacted with sodium allyloxide or sodium ω-undecenyloxide to produce permethylated 6A,6C-bisallyl- (or bis-ω-undecenyl)-β-cyclodextrin 5 or 6 or was hydrolyzed with 2% sodium amalgam in methanol to yield diol 7. Compound 7 was oxidized with periodinane, followed by Wittig's reaction with methyltriphenylphosphonium iodide to give permethylated 6A,6C-dideoxy-6A,6C-dimethylene-β-cyclodextrin (9). Treatment of 2 with p,p'-methylenebis(benzenesulfonyl chloride) or p,p'-biphenyldisulfonyl chloride gave bissulfonate esters 10 or 11 , respectively. Both of them were treated with sodium p-allyloxy-phenoxide in DMF, followed by methylation, to form permethylated 6A,6D-di-O-(p-allyloxyphenyl)-β-cyclo-dextrin (16). Bisalkenes 5, 6, 9 and 16 were copolymerized with α,ω-dioctyldecamethylhexasiloxane by a hydrosilylation process to give the cyclodextrin-containing copolymers 17–20.  相似文献   

15.
Isolation of 10′-Apo-β-carotene-10′-ol and (3R)-10′-Apo-β-carotene-3,10′-diol (Galloxanthin) from Rose Flowers The novel (all-E)-10′-apol-β-carotene-10′-ol ( 2 ) and (all-E,3R)-10′-apo-β-carotene-3,10′-diol ( 5 ) have been isolated from petals of one yellow species and various whitish or yellow blend varieties of rose cultivars. Each (all-E)-compound is accompanied by a (Z)-isomer, probably the (9Z)-isomer. Diol 5 proved to be identical with galloxanthin, an apo-10′-carotenol previously isolated from the retina of chicken.  相似文献   

16.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

17.
于湛  闫存玉  宋凤瑞  刘志强  刘淑莹 《化学学报》2006,64(14):1507-1512
利用电喷雾质谱研究了β-环糊精、七-(2,6-二-O-甲基)-β-环糊精作为手性识别试剂对1,1'-联萘酚对映体的手性识别效应. 实验结果表明, 在气相中, β-环糊精与七-(2,6-二-O-甲基)-β-环糊精都可以与联萘酚形成非共价复合物. 对形成的复合物的串联质谱研究表明, β-环糊精不能识别联萘酚对映体, 而七-(2,6-二-O-甲基)-β-环糊精对联萘酚对映体有较强的手性识别效应. 进一步研究表明七-(2,6-二-O-甲基)-β-环糊精与联萘酚对映体混合比例以及CID能量对于手性识别并无影响.  相似文献   

18.
New Phellandrene Derivatives from the Root Oil of Angelica archangelica L . 2-Nitro-1,5-p-menthadiene ( 5 ), trans- and cis-6-nitro-1(7), 2-p-menthadiene ( 6 and 7 ), trans-1(7), 5-p-menthadien-2-yl acetate ( 9 ) and a formal phellandrene derivative, 7-isopropyl-5-methyl-5-bicyclo [2.2.2]octen-2-one ( 16 ), have been identified in the root oil of Angelica archangelica L . Starting from (?)-(R)-α-phellandrene ( 1 ) (R)- 5 , (4R, 6S)- 6 /(4R, 6R)- 7 , (2S, 4R)- 9 and (1R, 4R, 7R)- 16 as well as (2S, 4R)- 11 , (2R, 4R)- 12 and (2R, 4R)- 10 have been prepared.  相似文献   

19.
Ethyl 4-substituted 2-methyl-5-oxo-5,6-dihydro-1,6-naphthyridine-3-carboxylates 3a-h were synthetized in a one-step reaction from diethyl 2,6-diraethylpyridine-3,5-dicarboxylates 1a-h by aminomethinylation with 1,3,5-triazine (2). The 6-substitued derivatives 6a-z,aa-ff could be obtained from diethyl 2-[2-(dimethylamino)-vinyl]-6-methylpyridine-3,5-dicarboxylate ( 4 ) either directly or via the isolated intermediate 2-[2-(arylamino)-vinyl]pyridine compounds 5a-i.  相似文献   

20.
A new open-chain monoterpene glycoside, anatolioside E ( 1 ), was isolated from the leaves of Viburnum orientale in addition to three known acyclic monoterpene glycosides, betulalbusides A ( 2 ) and B ( 3 ), and 2(E)-2,6-dimethyl-2,7-octadien-1,6-diol-6-O-β-D -glucopyranoside( 4 ). The structure of anatolioside E ( 1 ) was elucidated on the basis of chemical and spectral data as 6-O-[β-D -glucopyransoyl-(1?? → 6?″)-2-(E), 6(R), 2,6-dimethyl-6-hydroxy-2,7-octadienoyl-(1?″ → 2″″)-β-D -glucopyranosyl-(1″″ → 6?)-2-(E), 6(R), 2,6-dimethyl-6-hydroxy-2,7-octadienoyl-(1? → 4″)-α-L -rhamnopyranosyl-(1″″ → 2′)-β-D -glucopyranosyl]linalool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号