共查询到20条相似文献,搜索用时 31 毫秒
1.
Fred B. Wampler 《国际化学动力学杂志》1976,8(6):945-957
The photolysis of SO2 at 3130 Å, FWHM = 165 Å, and 22°C has been investigated in the presence of cis- and trans-2-pentene. Quantum yields for the SO2 photosensitized isomerization of one isomer to the other have been made for a variation in the [SO2]/[C5H10] ratio of 3.41–366 for cis-2-C5H10 and of 1.28–367 for trans-2-C5H10. A kinetic analysis of each of these systems permitted new estimates to be made for the SO2 collisionally induced intersystem crossing ratio at 3130 Å from SO2(1B1) to SO2(3B1). The estimates of k1a/(k1a + k1b) obtained are 0.12 ± 0.01 and 0.12 ± 0.02 (two different kinetic analyses in the cis-2-C5H10 study) and 0.20 ± 0.05 and 0.20 ± 0.04 (two different kinetic analyses in the trans-2-C5H10 study). Collisionally induced intersystem crossing ratios of k2a/(k2a + k2b) = 0.51 ± 0.10 and k3a/(k3a + k3b) = 0.62 ± 0.12 were obtained for cis- and trans-2-pentene, respectively. Quenching rate constants at 22°C for removal of SO2(3B1) molecules by cis- and trans-2-C5H10 were estimated as (1.00 ± 0.29) × 1011 l./mole·sec and (0.857 ± 0.160) × 1011 l./mole/sec, respectively. Prolonged irradiations, extrapolated to infinite irradiation times, for mixtures initially containing SO2 and pure isomer, either the cis or trans, yielded a photostationary composition of [trans-2-pentene]/[cis-2-pentene] = 2.1 ± 0.1. 相似文献
2.
Fred B. Wampler 《国际化学动力学杂志》1976,8(4):511-517
Quantum yield measurements for the SO2(3B1) photosensitized isomerization of cis-1,2-difluoroethylene have been made at 3712 Å and 22°C. The [SO2]/[cis-C2F2H2] ratio was varied from 47.4 to 455 and the quantum yield measurements over this variation of concentration ratios were consistent with a mechanism in which SO2(3B1) molecules and the cis isomer form a collision intermediate which decomposes with a probability of 0.42 ± 0.17 and 0.58 ± 0.17 of producing trans- and cis-1,2-difluoroethylene, respectively. When SO2 was subjected to prolonged irradiations in the presence of initially either pure cis- or pure trans-1,2-difluoroethylene, a photostationary composition, [cis]/[trans] = 1.0 ± 0.2, was obtained. The rate constant at 22°C for removal of SO2(3B1) molecules by cis-1,2-difluoroethylene was estimated to be (1.72 ± 0.72) × 1010 1./mole · sec. 相似文献
3.
The equilibrium structures of cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, C(2)H(2)F(2), have been determined with high-level coupled cluster techniques combined with large basis sets, explicit consideration of core/valence, and scalar relativistic and higher order correlation effects. Excellent agreement was found with new semiexperimental structures, increasing the level of confidence in both approaches. Differences in bond lengths among ethylene and the fluoroethylenes are discussed. 相似文献
4.
The method of chemical difference was utilized to accurately determine the relative importance of all the reaction steps in the direct photolysis of N2O at 2139 Å (25° and 250°C) and 1849 Å (25° C), as well as in the Hg6(1P1)-sensitized photolysis of N2O at 1849 Å (25°C). In all cases, the primary process is predominantly, if not exclusively, Experiments with trace amounts of C3H6 added showed a slight, but not significant, difference in product ratios (N2 and O2). From these experiments the quantum yield of O(3P) from all possible sources was estimated as 0.02 ± 0.02. Experiments with excess N2 at 1849 Å indicated that O(1S) was not produced in the direct photolysis. The O(1S) yield is probably zero, and certainly <0.05. The O(1D) atom can react with N2O via The ratio k2/k3 was found to be 0.69 ± 0.05 in all cases. When combined with other data from our laboratory, the average value is 0.65 ± 0.07. This represents the value for translationally energetic O(1D) atoms. When excess He was added to remove the excess translational energy, k2/k3 rose to 0.83 ± 0.06, which is in reasonable agreement with the value of 1.01 ± 0.06 found in another laboratory. We conclude that for O(1D) atoms with no excess thermal energy, k2/k3 = 0.90 ± 0.10. 相似文献
5.
The photolysis of pure N2O, N2O and N2, and N2O and C3H6 mixtures at 1470 Å and room temperature has been studied to determine the relative importance of the primary processes. The results are where ?{O(1D)} = 0.515 represents both the O(1D) produced in the primary act and that produced by collisional quenching of O(1S); ?{N2(3Σ)} = 0.084 represents only that portion of N2(3?) which dissociates N2O on deactivation; and ?{O(1S)} = 0.38 – ±{N(2D)} represents only that portion of O(1S) which enters into chemical reaction with N2O. If the reaction of O(1S) with N2O yields only N2 and O2 as products, which seems likely from potential-energy curve considerations then ±{O(1S)} = 0.135 ± 0.06 and ?{N(2D)} = 0.245 ± 0.06. Young and coworkers [4] have found from spectroscopic observations that the total quantum yield of O(1S) is about 0.5. Thus it can be concluded that collisional removal of O(1S) by N2O yields mainly O(1D) with chemical reaction being less important. Furthermore, most of the O(1D) is produced this way, and the true primary yield of O(1D) is about 0.15. The metastable N(2D) is not deactivated by N2O, but is removed by chemical reaction to produce N2 and NO. The results further indicate that N2(3Σ) dissociates N2O at least 80% of the time during quenching. The relative efficiency of N2O compared to N2 is about 2 for the removal of O(1D). O(1S) is removed about 90 times as efficiently by C3H6 as by N2O. 相似文献
6.
The photolysis of SO2 at 3712 Å in the presence of the 1,2-dichloroethylenes has been investigated at 22deg;C. The data are consistent with the SO2(3B1) photosensitized isomerization of the 1,2-dichloroethylene isomer. A kinetic treatment of the initial quantum yield data was consistent with the formation of a polarized charge-transfer intermediate whenever SO2(3B1) molecules and one of the 1,2-dichloroethylene isomers collide which ultimately decays unimolecularly to the cis-isomer with a probability of 0.70 ± 0.26 and to the trans-isomer with a 0.37 ± 0.16 probability. Quenching rate constants for removal of SO2(3B1) molecules by cis- and trans-1,2-dichloroethylene have been estimated from quantum yield data and from laser excited phosphorescence lifetimes using an excitation wavelength of 3130 Å. Estimates of the quenching rate constant (units of 1./mole ± sec) are for the cis-isomer, (1.63 ± 0.71) × 1010, quantum yield data, and (2.44 ± 0.11) × 1010, lifetime data; and for the trans-isomer,(2.59 ± 0.09)×1010, lifetime data, and (2.35 ±0.89) × 1010, quantum yield data. An experimentally determined photostationary composition,[cis-C2Cl2H2]/[trans-C2Cl2H2] = 1.8 - 0.1, was in good agreement with a value of 2.00 - 1.15 which was predicted from rate constants derived in this study. 相似文献
7.
A preparative route to cis- and trans-1,2-dibromocyclopropane () was developed via the Hunsdiecker reaction of silver cyclopropane-1,2-dicarboxylate (). Cis- and trans- gave the same ratio of cis- and trans- (1:3.2). The mechanism of this reaction is briefly discussed. 相似文献
8.
Fred B. Wampler 《国际化学动力学杂志》1976,8(6):935-943
The photolysis of SO2 in the presence of cis- and trans-2-pentene has been investigated at 3660 Å and 22°C. Quantum yield measurements of the SO2 photosensitized conversion of one isomer into the other are consistent with a mechanism in which the only participating excited electronic state of SO2 is the SO2(3B1) state. Quantum yield measurements were made for a variation in PSO2/Pisomer reactant ratios of 4.01–283 and 57.5–351 for the cis and trans isomers, respectively. The data are consistent with a mechanism in which a (SO2-olefin)3 collision intermediate is the precursor to the photosensitized isomeric products. The intermediate undergoes unimolecular decay to yield the cis and trans isomers with probabilities of 0.26 ± 0.05 and 0.69 ± 0.04, respectively. Estimates of the quenching rate constants at 22°C for removal of SO2(3B1) molecules by cis- and trans-2-pentene are (0.633 ± 0.125) × 1011 l./mole/sec and (1.00 ± 0.27) × 1011 l./mole/sec, respectively. An experimentally determined photostationary composition, [trans-2-pentene]/[cis-2-pentene] = 2.3 ± 0.1 was in fair agreement with that of 1.7 ± 0.7 as predicted from kinetic data derived in this study. 相似文献
9.
A. O. Martirosyan V. E. Hovhanesyan S. P. Gasparyan A. A. Karapetyan G. A. Panosyan V. O. Martirosyan 《Chemistry of Heterocyclic Compounds》2004,40(8):1007-1008
Ethyl cis- and trans-4-chloro-5-oxo-1,2-diphenylpyrrolidine-2-carboxylate have been synthesized by the cyclization of ethyl N-(,-dichloropropionyl)-N-phenyl--aminophenylacetate. 相似文献
10.
Visinoni R Giorgianni S Stoppa P Ghersetti S 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2000,(10):1887-1899
The diode laser spectrum of cis-1,2-CHF=CHF has been measured and analyzed in the nu4 fundamental region near 1016 cm(-1). This vibration of symmetry species A1 corresponds to the C-F symmetric stretching motion and gives rise to a strong b-type band. The rovibrational analysis, extended to the P, Q, and R branches, led to the identification of 2800 lines with J < or = 62, Ka < or = 18, Kc < or = 62. The assigned transitions free of major resonance contributions, fitted using Watson's A-reduction Hamiltonian in the Ir representation, yielded a set of spectroscopic parameters up to the quartic coefficients for the V4 = 1 state. Several perturbation effects occur throughout the band, mainly caused by the first-order c-type Coriolis interaction with the nu5 + nu11, vibrational state. Even though no transitions to the perturbing level were observed, the band orign and the rotational constants for the perturber were determined from a dyad model which includes the Coriolis interaction term. 相似文献
11.
The photolysis of cis-1,2-dichloroethylene has been investigated in the presence of I2 as a function of incident wavelength and as a function of initial cis pressure. The results indicate that at ± > 2200Å the following primary processes occur: The lifetime of the excited state yielding the above products is estimated at about 2.4×10?9 sec. At shorter wavelengths additional C2H2 is produced by decomposition of a vibrationally excited C2H2Cl radical. Scavenging of the CHClCH radical by I2 produced trans and cis-CHClCHl in a ratio of 4 to 1, respectively. 相似文献
12.
The mechanism of the reactions of electronically excited SO2 with isobutane has been studied through the measurement of the initial quantum yields of product formation in 3130 Å irradiated gaseous binary mixtures of SO2 and isobutane and ternary mixtures of SO2, isobutane, C6H6 or CO2. Under low-pressure conditions (P < 10 torr) the kinetic treatment of the present data shows that only one singlet and one triplet state, presumably the 1B1 and 3B1 states, are involved in the photoreaction mechanism. The data give k2a = 8.4 × 109; SO2(1B1) + isobutane → products (2a); k5a ? k5 = 8.7 × 108 l./mol·sec; SO2(3B1) + isobutane → products (5a) SO2(3B1) + isobutane → (SO2) + isobutane (5b) k1a/k1 = 0.145 ± 0.037; SO2(1B1) + SO2 → SO2(3B1) + SO2 (1a) SO2(1B1) + SO2 → (2SO2) (1b) k2b/k2 = 0.273 ± 0.018; SO2(1B1) + isobutane → SO2(3B1) + isobutane (2b); SO2(1B1) + isobutane → (SO2) + isobutane (2c) error limits are ± 2 σ. The contribution from the excited SO2(1B1) molecules to the quantum yields of the photolyses of SO2–isobutane mixtures is not negligible. Under high-pressure conditions (P > 10 torr) the low-pressure mechanism coupled with the saturation effect on the phosphorescence lifetimes of SO2(3B1) molecules cannot alone rationalize the quantum yields. The evaluation suggests that some nonradiative intermediate state (X) is involved in the formation of “extra” triplet molecules. This ill-defined state decays largely nonradiatively to SO2 in experiments at low pressures, X → SO2 (12). In the presence of C6H6 the low-pressure data give k7 = (8.5 ± 1.8) × 1010, and the high-pressure data give k7 = (8.3 ± 0.6) × 1010 and (9.9 ± 0.9) × 1010l./mol·sec; SO2(3B1) + C6H6 → nonradiative products (7). These estimates are in good agreement with values directly measured from low-pressure lifetime studies, (8.1 ± 0.7) × 1010 and (8.8 ± 0.8) × 1010l./mol·sec. 相似文献
13.
The mechanism of the photolysis of formaldehyde was studied in experiments at 3130 Å and in the pressure range of 1–12 torr at 25°C. The experiments were designed to establish the quantum yields of the primary decomposition steps (1) and (2), CH2O + hν → H + HCO (1): CH2O + hν → H2 + CO (2), through the effects of added isobutene, trimethylsilane, and nitric oxide on ΦCO and Φ. The ratio ΦCO/Φ was found to be 1.01 ± 0.09(2σ) and (Φ + ΦCO)/2 = 1.10 ± 0.08 over the range of pressures and a 12-fold change in incident light intensity. Isobutene and nitric oxide additions reduced Φ to about the same limiting value, 0.32 ± 0.03 and 0.34 ± 0.04, respectively, but these added gases differed in their effects on ΦCO. With isobutene addition ΦCO/Φ reached a limiting value of 2.3; with NO addition ΦCO exceeded unity. The addition of small amounts of Me3SiH reduced Φ to 1.02 ± 0.08 and lowered ΦCO to 0.7. These findings were rationalized in terms of a mechanism in which the “nonscavengeable,” molecular hydrogen is formed in reaction (2) with ?2 = 0.32 ± 0.03, while the “free radical” hydrogen is formed in reaction (1) with ?1 = 0.68 ± 0.03. In the pure formaldehyde system these reactions are followed by (3)–(5): H + CH2O → H2 + HCO (3); 2HCO → CH2O + CO (4); 2HCO → H2 + 2CO (5). The data suggest k4/k5 ? 5.8. Isobutene reduced Φ by the reaction H + iso-C4H8 → C4H9 (20), and the results give k20/k3 ? 43 ± 4, in good agreement with the ratio of the reported values of the individual constants k3 and k20. 相似文献
14.
15.
《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》1983,39(6):505-510
The infrared and Raman spectra of cis- and trans-dimethylbromocyclopropane have been recorded from 4000 to 50 cm−1. An assignment of the majority of the fundamentals is proposed and compared to those of related molecules. Definite and consistent trends in a number of normal modes of the ring and the methyl groups with the nature, position and number of the substituents have been found. Clear evidence has been obtained for steric interaction between the three substituents in cis-position. 相似文献
16.
I. G. Tishchenko O. N. Bubel' V. A. Konovalov 《Chemistry of Heterocyclic Compounds》1981,17(7):705-710
The corresponding trans- and cis-1,2-dimethyl-4-aryl-5-aroyl-2-imidazolines were obtained from complexes of cis- and trans-1-methyl-2-aryl-3-aroylaziridines with BF3 by heating with acetonitrile. The reaction proceeds with inversion of the configuration of the starting 3-aroylaziridines. In the presence of bases the complexes of cis-1,2-dimethyl-4-aryl-5-aroyl-2-imidazolines readily undergo isomerization to the corresponding trans analogs. The structures of the products were established on the basis of the IR, PMR, and mass spectra and the results of elementary analysis. The configurations of the compounds were determined by means of the Overhauser nuclear effect.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 952–957, July, 1981. 相似文献
17.
Howard S. Kimmel James T. Waldron William H. Snyder 《Journal of Molecular Structure》1974,21(3):445-456
The vapor, liquid and CCl4 solution infrared spectra of cis- and trans-1,2-dimethoxyethylene were recorded in the region 250–4000 cm?1. The laser-Raman spectra were obtained in the liquid state only. The vibrational spectra show that at least two rotational isomers exist for each molecule. Further, the spectra indicate that for both the cis- and trans molecules, one of the rotational isomers has at least one planar conformer. Some vibrational assignments are made for the observed infrared and Raman bands of the cis- and trans- 1,2-dimethoxyethylenes. 相似文献
18.
19.
E.J.M. Van Schaick F.C. Mijlhoff G. Renes H.J. Geise 《Journal of Molecular Structure》1974,21(1):17-21
The molecular structure of cis- and trans-1,2-difluoroethene was studied in the gas phase by electron diffraction, using the sector-microphotometer technique. The molecules are planar. For trans-difluoroethene the geometrical parameters are: C-F bond: 1.338(0.003) Å; CC bond: 1.320(0.009) Å; C-H bond: 1.088(0.004) Å, ∠CCF 119.8°(0.2°); ∠CCH: 125° (1.2°). For cis-difluoroethene: C-F bond: 1.332(0.003) Å; CC bond: 1.311(0.008) Å; C-H bond: 1.100(0.003) Å; ∠CCF: 122.5°(0.2°); ∠CCH:127.0 °(2.3°). 相似文献
20.
《Journal of Photochemistry》1978,8(2):167-182
SO2 was photolyzed at 25 °C and 313.0 nm in the presence of allene and oxygen. The quantum yields of the gas phase products CO and C2H4 were determined over a wide range of allene and oxygen pressures as well as in the presence and absence of 600 Torr of CO2. The quantum yield Φ {CO} of CO increased at constant [allene]/[SO2] ratios with the addition of O2 up to pressures of 1 – 30 Torr depending upon the [allene]/[SO2] ratio. With further increases in O2 pressure, Φ {CO} was quenched. The quantum yield Φ {C2H4} of C2H4 exhibited similar behavior. The addition of 600 Torr of CO2 appeared to have little effect upon either the enhancement or quenching of Φ {CO}. The addition of increasing amounts of CO2 to a constant [allene]/[SO2]/[O2] ratio decreased Φ {C2H4} to a limiting value of approximately 4 × 10−3 at 600 Torr of CO2. Both the singlet and triplet emitting states as well as two non-emitting states of SO2 previously proposed to be important in the photochemistry of SO2 are necessary to interpret the results of this study. A relatively complete mechanism is proposed, all the pertinent rate coefficients are tabulated, and from these values Φ {CO} and Φ {C2H4} values are computed and compared with the observed values. The proposed mechanism is found to underestimate total Φ {C2H4} at low allene and high O2 pressures. There must be an additional source of C2H4 which is not included in the mechanism. 相似文献