首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas‐phase kinetics of CHBr2 + NO2 and CH3CHBr + NO2 reactions have been studied in direct time resolved measurements using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals were generated by pulsed laser photolysis of bromoform and 1,1‐dibromoethane at 248 nm. The subsequent decays of the radical concentrations were monitored as a function of [NO2] under pseudo–first‐order conditions. The rate coefficients of both reactions are independent of bath gas (He) pressure and display negative temperature dependence under the conditions of 2–6 Torr pressure (He) and 250–480 K. The obtained bimolecular rate coefficients are k(CHBr2 + NO2) = (9.8 ± 0.4) × 10?12 (T/300 K)?1.65 ± 0.18 cm3 s?1 (288–483 K) and k(CH3CHBr + NO2) = (2.27 ± 0.06) × 10?11 (T/300 K)?1.28 ± 0.11 cm3 s?1 (250–483 K), with the uncertainties given as one standard error. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±25%. The reaction products identified were CBr2O for the CHBr2 + NO2 reaction and CHBrO and CH3CHO with minor amounts of CH3 for the CH3CHBr + NO2 reaction, respectively. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 767–777, 2012  相似文献   

2.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals ·CH2CN and ·CH2CO2C(CH3)3 to a variety of mono- and 1,1-disubstituted and to selected 1,2- and trisubstituted alkenes in acetonitrile solution. To alkenes CH2?CXY, ·CH2CN adds at the unsubstituted C-atom with rate constants ranging from 3.3·103 M ?1S ?1 (ethene) to 2.4·106 M ?1S ?1 (1,1-diphenylethene) at 278 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.7 ± 0.3. ·CH2CO2C(CH3)3 shows a very similar reactivity with rate constants at 296 K ranging from 1.1·104 M ?1S ?1 (ethene) to 107 M ?1S ?1 (1,1-diphenylethene) and frequency factors log (A/M ?1S ?1) = 8.4 ± 0.1. For both radicals, the rate constants and the activation energies for addition to CH2?CXY correlate well with the overall reaction enthalpy. In contrast to the expectation of an electro- or ambiphilic behavior, polar alkene-substituent effects are not clearly expressed, but some deviations from the enthalpy correlations point to a weak electrophilicity of the radicals. The rate constants for the addition to 1,2- and to trisubstituted alkenes reveal additional steric substituent effects. Self-termination rate data for the title radicals and spectral properties of their adducts to the alkenes are also given.  相似文献   

3.
Rate constants for the reactions of OH and NO3 radicals with CH2?CHF (k1 and k4), CH2?CF2 (k2 and k5), and CHF?CF2 (k3 and k6) were determined by means of a relative rate method. The rate constants for OH radical reactions at 253–328 K were k1 = (1.20 ± 0.37) × 10?12 exp[(410 ± 90)/T], k2 = (1.51 ± 0.37) × 10?12 exp[(190 ± 70)/T], and k3 = (2.53 ± 0.60) × 10?12 exp[(340 ± 70)/T] cm3 molecule?1 s?1. The rate constants for NO3 radical reactions at 298 K were k4 = (1.78 ± 0.12) × 10?16 (CH2?CHF), k5 = (1.23 ± 0.02) × 10?16 (CH2?CF2), and k6 = (1.86 ± 0.09) × 10?16 (CHF?CF2) cm3 molecule?1 s?1. The rate constants for O3 reactions with CH2?CHF (k7), CH2?CF2 (k8), and CHF?CF2 (k9) were determined by means of an absolute rate method: k7 = (1.52 ± 0.22) × 10?15 exp[?(2280 ± 40)/T], k8 = (4.91 ± 2.30) × 10?16 exp[?(3360 ± 130)/T], and k9 = (5.70 ± 4.04) × 10?16 exp[?(2580 ± 200)/T] cm3 molecule?1 s?1 at 236–308 K. The errors reported are ±2 standard deviations and represent precision only. The tropospheric lifetimes of CH2?CHF, CH2?CF2, and CHF?CF2 with respect to reaction with OH radicals, NO3 radicals, and O3 were calculated to be 2.3, 4.4, and 1.6 days, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 619–628, 2010  相似文献   

4.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Rate constants for the gas‐phase reactions of CH3OCH2CF3 (k1), CH3OCH3 (k2), CH3OCH2CH3 (k3), and CH3CH2OCH2CH3 (k4) with NO3 radicals were determined by means of a relative rate method at 298 K. NO3 radicals were prepared by thermal decomposition of N2O5 in a 700–750 Torr N2O5/NO2/NO3/air gas mixture in a 1‐m3 temperature‐controlled chamber. The measured rate constants at 298 K were k1 = (5.3 ± 0.9) × 10?18, k2 = (1.07 ± 0.10) × 10?16, k3 = (7.81 ± 0.36) × 10?16, and k4 = (2.80 ± 0.10) × 10?15 cm3 molecule?1 s?1. Potential energy surfaces for the NO3 radical reactions were computationally explored, and the rate constants of k1k5 were calculated according to the transition state theory. The calculated values of rate constants k1k4 were in reasonable agreement with the experimentally determined values. The calculated value of k5 was compared with the estimate (k5 < 5.3 × 10?21 cm3 molecule?1 s?1) derived from the correlation between the rate constants for reactions with NO3 radicals (k1k4) and the corresponding rate constants for reactions with OH radicals. We estimated the tropospheric lifetimes of CH3OCH2CF3 and CHF2CF2OCH2CF3 to be 240 and >2.4 × 105 years, respectively, with respect to reaction with NO3 radicals. The tropospheric lifetimes of these compounds are much shorter with respect to the OH reaction. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 490–497, 2009  相似文献   

6.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Rate constant ratios, kd/kc, for the disproportionation/combination reaction at a temperature of 295 ± 2 K, have been measured as 0.034 ± 0.009 for the collision between CF3CH2CF2 + CF3 radicals and as 0.075 ± 0.019 for CF3CH2CF2 + CF3CH2CF2 radicals. The effect of the two fluorine substituents on the rate constant ratio is compared to previous kd/kcs with CF3CH2CH2, CF3CH2CHCl, and CF3CH2CHCF3 radicals. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 237–243, 1999  相似文献   

8.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

9.
Relative rate constants for the reaction of OH radicals with a series of n-alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1s?1, the rate constants obtained are (X1012 cm3 molecule?1 s?1): propane 1.22 ± 0.05, n-pentane 4.13 ± 0.08, n-heptane 7.30 ± 0.17, n-octane 9.01 ± 0.19, n-nonane 10.7 ± 0.4, and n-decane 11.4 ± 0.6. The data for propane, n-pentane, and n-octane are in good agreement with literature values, while those for n-heptane, n-nonane, and n-decane are reported for the first time. These data show that the rate constant per secondary C—H bond is ∽40% higher for —CH2— groups bonded to two other —CH2— groups than for those bonded to a —CH2— group and a —CH3 group.  相似文献   

10.
An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

11.
The rate coefficients for the removal of Cl atoms by reaction with three HCFCs, CF3CHCl2 (HCFC-123), CF3CHFCl (HCFC-124), and CH3CFCl2 (HCFC 141b), were measured as a function of temperature between 276 and 397 K. CH3CF2Cl (HCFC-142b) was studied only at 298 K. The Arrhenius expressions obtained are: k1 = (3.94 ± 0.84)× 10?12 exp[?(1740 ± 100)/T] cm3 molecule?1 s?1 for CF3CHCl2 (HCFC 123); k2 = (1.16 ± 0.41) × 10?12 exp[?(1800 ± 150)/T] cm3 molecule?1 s?1 for CF3CHFCl (HCFC 124); and k3 = (1.6 ± 1.1) × 10?12 exp[?(1800 ± 500)/T] cm3 molecule?1 s?1 for CH3CFCl2 (HCFC 141b). In case of HCFC 141b, non-Arrhenius behavior was observed at temperatures above ca. 350 K and is attributed to the thermal decomposition of CH2CFCl2 product into Cl + CH2CFCl. In case of HCFC-142b, only an upper limit for the 298 K value of the rate coefficient was obtained. The atmospheric significance of these results are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
A relative rate method has been used to determine rate constants for the gas-phase reactions of a series of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) at 298 ± 2 K and atmospheric pressure of air. Based on a rate constant for the reaction of the Cl atom with CH4 of (1.0 ± 0.2) ? 10?13 cm3 molecule?1 s?1 at 298 K, the following Cl atom reaction rate constants (in units of 10?15 cm3 molecule?1 s?1) were obtained: CH3F, 340 ± 70; CH3CHF2, 240 ± 50; CH2FCl, 110 ± 25; CHFCl2, 21 ± 4; CHCl2CF3, 14 ± 3; CHFClCF3, 2.7 ± 0.6; CH3CFCl2, 2.4 ± 0.5; CHF2Cl, 2.0 ± 0.4; CH2FCF3, 1.6 ± 0.3; CH3CF2Cl, 0.37 ± 0.08; and CHF2CF3, 0.24 ± 0.05. These Cl atom reaction rate constants are compared with literature data and with the corresponding OH radical reaction rate constants. © John Wiley & Sons, Inc.  相似文献   

13.
The rate constant for the reaction of CH3OCH2 radicals with O2 (reaction (1)) and the self reaction of CH3OCH2 radicals (reaction (5)) were measured using pulse radiolysis coupled with time resolved UV absorption spectroscopy. k1 was studied at 296K over the pressure range 0.025–1 bar and in the temperature range 296–473K at 18 bar total pressure. Reaction (1) is known to proceed through the following mechanism: CH3OCH2 + O2 ↔ CH3OCH2O2# → CH2OCH2O2H# → 2HCHO + OH (kprod) CH3OCH2 + O2 ↔ CH3OCH2O2# + M → CH3OCH2O2 + M (kRO2) k = kRO2 + kprod, where kRO2 is the rate constant for peroxy radical production and kprod is the rate constant for formaldehyde production. The k1 values obtained at 296K together with the available literature values for k1 determined at low pressures were fitted using a modified Lindemann mechanism and the following parameters were obtained: kRO2,0 = (9.4 ± 4.2) × 10−30 cm6 molecule−2 s−1, kRO2,∞ = (1.14 ± 0.04) × 10−11 cm3 molecule−1 s−1, and kprod,0 = (6.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, where kRO2,0 and kRO2,∞ are the overall termolecular and bimolecular rate constants for formation of CH3OCH2O2 radicals and kprod,0 represents the bimolecular rate constant for the reaction of CH3OCH2 radicals with O2 to yield formaldehyde in the limit of low pressure. kRO2,∞ = (1.07 ± 0.08) × 10−11 exp(−(46 ± 27)/T) cm3 molecule−1 s−1 was determined at 18 bar total pressure over the temperature range 296–473K. At 1 bar total pressure and 296K, k5 = (4.1 ± 0.5) × 10−11 cm3 molecule−1 s−1 and at 18 bar total pressure over the temperature range 296–523K, k5 = (4.7 ± 0.6) × 10−11 cm3 molecule−1 s−1. As a part of this study the decay rate of CH3OCH2 radicals was used to study the thermal decomposition of CH3OCH2 radicals in the temperature range 573–666K at 18 bar total pressure. The observed decay rates of CH3OCH2 radicals were consistent with the literature value of k2 = 1.6 × 1013exp(−12800/T)s−1. The results are discussed in the context of dimethyl ether as an alternative diesel fuel. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
Relative rate constants for the gas-phase reactions of Cl-atom with thirteen atmospherically interesting alkanes (C2? C8) have been determined at 296 ± 2 K based on GC/FID measurements of their relative decays in the UV (λ ≥ 300 nm) photolysis of mixtures containing Cl2 and the entire series of the selected alkanes in the mtorr range in 750 torr of N2. The following absolute rate constants (in units of 10?10 cm3 molecule?1 s?1) have been derived from the relative rate constants combined with the value of 1.94 × 10?10 cm3 molecule?1 s?1 for the Cl + n-butane reaction: ethane (0.57 ± 0.05); propane (1.27 ± 0.02); 2-methyl propane (1.30 ± 0.01), 2-methyl butane ((1.96 ± 0.02)), n-pentane (2.50 ± 0.02); 2,3-dimethyl butane (2.00 ± 0.06); 2-methyl pentane (2.58 ± 0.08); n-hexane (3.05 ± 0.04); 2-methyl hexane (3.12 ± 0.04); n-heptane (3.65 ± 0.06); 2,2,4-trimethyl pentane (2.25 ± 0.08); and n-octane (4.09 ± 0.12). The uncertainties indicated are two least-squares standard deviations (2σ). These rate constants are compared with literature values and their applicability to Arctic tropospheric conditions is discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Using a pulse-radiolysis transient UV–VIS absorption system, rate constants for the reactions of F atoms with CH3CHO (1) and CH3CO radicals with O2 (2) and NO (3) at 295 K and 1000 mbar total pressure of SF6 was determined to be k1=(1.4±0.2)×10−10, k2=(4.4±0.7)×10−12, and k3=(2.4±0.7)×10−11 cm3 molecule−1 s−1. By monitoring the formation of CH3C(O)O2 radicals (λ>250nm) and NO2 (λ=400.5nm) following radiolysis of SF6/CH3CHO/O2 and SF6/CH3CHO/O2/NO mixtures, respectively, it was deduced that reaction of F atoms with CH3CHO gives (65±9)% CH3CO and (35±9)% HC(O)CH2 radicals. Finally, the data obtained here suggest that decomposition of HC(O)CH2O radicals via C C bond scission occurs at a rate of <4.7×105 s−1. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 913–921, 1998  相似文献   

16.
The rate of the reaction CH2I2 + HI ? CH3I + I2 has been followed spectrophotometrically from 201.0 to 311.2°. The rate constant for the reaction fits the equation, log (k1/M?1 sec?1) = 11.45 ± 0.18 - (15.11 ± 0.44)/θ. This value, combined with the assumption that E2 = 0 ± 1 kcal/mole, leads to ΔH (CH2I, g) = 55.0 ± 1.6 kcal/mole and DH (H? CH2I) = 103.8 ± 1.6 kcal/mole. The kinetics of the disproportionation, 2 CH3I ? CH4 + CH2I2 were studied at 331° and are compatible with the above values.  相似文献   

17.
Synthesis, Crystal Structure, and Vibrational Spectra of cis ‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO By reaction of (n‐Bu4N)2[ReBr6] with pyridine and (n‐Bu4N)BH4 in dichloromethane halogeno‐pyridine‐rhenium(III)complexes are formed and purified by chromatography. X‐ray structure determination on a single crystal has been performed of cis‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO (monoclinic, space group P21/c, a = 15.0690(9), b = 8.3337(8), c = 35.588(4) Å, β = 96.409(7), Z = 4). Based on the molecular parameters of the X‐ray structure determination and assuming C2 point symmetry for the anion cis‐[ReBr4Py2] the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are in the Br–Re–Br axis fd(ReBr) = 1.49, in the asymmetrically coordinated N′–Re–Br · axes fd(ReBr · ) = 1.03 und fd(ReN′) = 2.52 mdyn/Å.  相似文献   

18.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

19.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

20.
Methylperoxy radicals were generated by the flash photolysis of azomethane–oxygen mixtures. The observed broadband spectrum of the CH3O2 radical is similar, but not identical to those reported previously. The CH3O2 decay followed second-order kinetics at high CH3O2 concentrations with k4' = (2.5 ± 0.3) × 108 liter/mol·sec (23 ± 2°C); 2CH3O2 → products (4). Because of the potential loss of CH3O2 through the reactions with HO2 and CH3O radicals subsequently formed in this system, simulations suggest that the true k4 is in the range: 2.5 × 108k4 ≥ 2.3 × 108 liter/mol·sec. Deviations from linearity of the plot of the reciprocal of the CH3O2 absorbance versus time were seen at long times and were attributed to the reaction (5) with an apparent rate constant k5' ? (1.6 ± 0.4) × 105 liter/mol·sec; CH3O2 + Me2N2 → product (5). The CH3O2–SO2 reaction, CH3O2 + SO2 → products (16), was studied by observing CH3O2 decay in flashed mixtures of Me2N2, O2, and SO2. The results gave the apparent second-order rate constant k16' ? (6.4 ± 1.4) × 106 liter/mol·sec. It appears likely that each occurrence of reaction (5) and (16) is followed by the loss of an additional CH3O2 radical and that k5 ? k5'/2 and k16 ? k16'/2. Our findings suggest that a significant fraction of the SO2 oxidation in a sunlight-irradiated NOx?RH-polluted atmosphere, may occur by reaction with CH3O2 as well as from the HO and HO2 reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号