首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
李强  杨俊升  黄多辉  曹启龙  王藩侯 《中国物理 B》2014,23(1):17101-017101
The thermodynamic properties and the phase transition of ThO2 from the cubic structure to the orthorhombic structure are investigated using the first-principles projector-augmented wave method. The vibrational contribution to Helmholtz free energy is evaluated from the first-principles phonon calculations. The anharmonic contribution to quasi-harmonic free energy is accounted for by using an effective method(2010 Phys. Rev. B 81 172301). The results reveal that at ambient temperature, the phase transition from the cubic phase to the orthorhombic phase occurs at 26.45 GPa, which is consistent with the experimental and theoretical data. With increasing temperature, the transition pressure decreases almost linearly. By comparing the experimental results with the calculation results, it is shown that the thermodynamic properties of ThO2 at high temperature improve substantially after including the anharmonic correction to quasi-harmonic free energy.  相似文献   

2.
First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III–V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.  相似文献   

3.
The symmetry change occurring at the first-order I-II transition at 267 K in dicalcium barium propionate, DBP, has been determined using X-ray diffraction: phase II is orthorhombic, with probable space group Pnma or Pn21a. The twinning in phase II is explained and lattice parameters calculated in the temperature range 125 K to 300 K. The behaviour of the spontaneous strain in phase II is compared with that in the similar compound dicalcium barium acrylate.  相似文献   

4.
通过室温下的中子衍射和磁性测量对多晶样品Nd0.5Sr0.4Pb0 .1MnO3 的结构和磁性进行了实验研究.中子衍射结果表明,该样品具有正交的钙钛矿结构,空间群 是Pnma,即结构发生了晶场畸变.由M-T和R-T曲线可知,居里温度TC=273 K ,其特征是随着温度的增加样品经历了从铁磁金属态转变到顺磁半导态,且转变温度T p=225 K;用锰氧化物晶场和双交换作用的竞争解 关键词: 结构 磁性 中子衍射 晶场畸变 p')" href="#">转变温度Tp 双交换作用  相似文献   

5.
The nature of the magnetic ground state near the insulator-metal transition (IMT) in La(1-x)Ba(x)CoO3 was investigated via neutron scattering. Below the critical concentration, x(c)~0.22, a commensurate antiferromagnetic (AFM) phase appears initially. Upon approaching x(c), the AFM component weakens and a ferromagnetic (FM) ordered phase sets in while in the rhombohedral lattice. At x(c), a spin flip to a new FM structure occurs at the same time as the crystal symmetry transforms to orthorhombic (Pnma). The Pnma phase may be the driving force for the IMT.  相似文献   

6.
By employing first principle and a quasi-harmonic Debye model, we study the phase stability, phase transition, electronic structure and thermodynamic properties of cadmium sulfide (CdS). The results indicate that CdS is a typical ionic crystal and that the zinc-blende phase in CdS is thermodynamically unstable. Moreover, the heat capacity of the wurtzite and rocksalt phases of CdS decreases with pressure and increases with temperature, obeying the rule of the Debye T3 law at low temperature and the Dulong–Petit limit at high temperature.  相似文献   

7.
We report the occurrence of kinetic arrest of the first-order phase transition from R3c to Pbnm in supercooled La(x)MnO(3±δ) (x = 1 and 0.9, i.e. δ > 0.125). Structural studies have been done, employing low temperature transmission electron microscopy (LT-TEM) and low temperature x-ray diffraction (LT-XRD) techniques. No phase transformation was observed even in La(x)MnO(3±δ) aged for ~12 h at 98 K. The evidence of the occurrence of kinetic arrest was realized at low temperatures through in situ electron beam triggered nucleation and perpetual devitrification of the R3c phase into a Pbnm phase. It was clearly evidenced that the R3c structure of La(x)MnO(3±δ), below its ferromagnetic transition temperature, is metastable and prone to be transformed to a Pbnm orthorhombic structure following initiation by an electron beam trigger. The electron beam transformed Pbnm phase was found to transform back to the R3c phase through a first-order phase transition occurring close to the ferromagnetic to paramagnetic transition (T(c)) during heating. The glass-like kinetics of the arrested R3c phase has been investigated through resistance relaxation measurements, showing a decreasing logarithmic rate of decay of the arrested R3c phase towards the stable Pbnm phase with decreasing temperature, down to 5 K. On the basis of the correlations observed in the resistance-versus-temperature, magnetization-versus-temperature, magnetization-versus-field, resistance relaxation and LT-XRD measurements, the occurrence of kinetic arrest has been attributed to the suppression of Jahn-Teller distortion by double exchange across the insulator-metal transition.  相似文献   

8.
Peng Liu 《中国物理 B》2022,31(10):106104-106104
As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF3, from R—3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF6 octahedra and formation of TiF8 square antiprismatic units. The Pnma phase of TiF3, formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF3, VF3, CrF3, and MnF3, offering valuable insights into the high-pressure phases of transition metal trifluorides.  相似文献   

9.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

10.
The structural transition of BaF2 nanocrystals is studied by in situ high pressure synchrotron radiation X-ray diffraction measurements up to about 21.2 GPa at ambient temperature. Two phase transformations were observed at 5.8 and 14.4 GPa, and the two high pressure phases are identified as orthorhombic (Pnma) phase and hexagonal (P63/mmc) phase by Rietveld refinement. Upon decompression, the α-PbCl2-type metastable phase is retained when the pressure is released. Two phase transformations of the BaF2 nanocrystals are higher than that in bulk BaF2. It is proposed that the size effects are found to influence the BaF2 nanocrystals high-pressure behaviors and the surface energy plays a significant role in the structural stability.  相似文献   

11.
Structural stability and mechanical and thermodynamic properties of the orthorhombic and trigonal MgSiN2 polymorphs (or-MgSiN2 and tr-MgSiN2) were investigated through density functional theory and quasi-harmonic Debye model (QHDM). Our calculations show that or-MgSiN2 is energetically the stable polymorph at low pressure, in agreement with previous experimental and theoretical study. Under pressure, a crystallographic transition from the orthorhombic structure to the trigonal one occurs around 25, 17.45 and 19.05 GPa as obtained from the generalized gradient approximation of Perdew-Wang (GGA-PW91), the generalized gradient approximation parameterized recently by Perdew et al (GGA-PBEsol) and the local density approximation developed by Ceperley and Alder and parameterized by Perdew and Zunger (LDA-CAPZ), respectively. Single-crystalline and polycrystalline elastic constants and related properties, namely Vickers hardness, acoustic Grüneisen parameter, minimum thermal conductivity, isotropic sound velocities and Debye temperature, were numerically estimated for both or-MgSiN2 and tr-MgSiN2. We have showed that the hardness of tr-MgSiN2 is comparable to that of the harder materials like c-BN and B6O. Temperature and pressure dependencies of volume, bulk modulus, thermal expansion, Grüneisen parameter, heat capacities and Debye temperature were investigated using QHDM.  相似文献   

12.
王艳  曹仟慧  胡翠娥  曾召益 《物理学报》2019,68(8):86401-086401
采用第一性原理计算对Ce_(0.8)La_(0.1)Th_(0.1)在高压下fcc-bct的结构相变、弹性性质及热力学性质进行了研究讨论.通过对计算结果的分析,发现了合金在压力下的相变规律,压强升高到31.6 GPa附近时fcc相开始向bct相转变,到34.9 GPa时bct相趋于稳定.对弹性模量的计算结果从另一角度反映了结构相变的信息.最后,利用准谐德拜模型对两种结构的高温高压热力学性质进行了理论预测.  相似文献   

13.
本文系统地研究了具有电荷有序(CO)和C型反铁磁(AFM)磁结构的钙钛矿锰氧化物Bi0.5Ca0.5-xBaxMnO3(x=0,0.03,0.05,0.07 and 0.10)的结构、磁性和电输运性质.系统晶格对称性保持Pnma空间群正交结构不变.随着Ba掺杂浓度的提高,电荷有序转变温度和反铁磁转变温度明显降低,表明掺...  相似文献   

14.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

15.
冯宏剑  刘发民 《中国物理 B》2009,18(4):1574-1577
In this paper the first-principles calculations within local spin density approximation (LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure of phase transition is reached. The critical pressure for the insulator-metal transition (IMT) is found to be about 50 GPa. A pressure induced crossover of high-spin states and low-spin states is observed close to the IMT pressure in R3c structure. The LSDA+U calculations account well for the mechanism of the IMT and crossover of spin states predicted in recent experiment (Ref.[1]).  相似文献   

16.
刘春梅  葛妮娜  付志坚  程艳  朱俊 《中国物理 B》2011,20(4):45101-045101
We investigate the structural and thermodynamic properties of OsN2 by a plane-wave pseudopotential density functional theory method. The obtained lattice constant,bulk modulus and cell volume per unit formula are consistent with the available theoretical data. Moreover,the pressure-induced phase transition of OsN2 from pyrite structure to fluorite structure has been obtained. It is found that the transition pressure of OsN2 at zero temperature is 67.2 GPa. The bulk modulus B as well as other thermodynamic quantities of fluorite OsN2 (including the Gru¨neisen constant γ and thermal expansion α) on temperatures and pressures have also been obtained.  相似文献   

17.
The pressure-induced phase transitions were studied in ZnTe by the thermoelectric power (S) technique. For the high-pressure trigonal phase P3121 cinnabar the large thermopower values S≈+400 correspond to semiconductor hole conductivity. During a transition into the orthorhombic structure Cmcm the value of S dropped by 40-50 times indicating metallic hole conductivity, like in the high pressure phases of other chalcogenides of II Group (HgSe, HgTe, CdTe) with Cmcm structure. In a transient region between the trigonal and orthorhombic phase (especially under decreasing pressure) a novel phase has been observed with a negative value of S. By analogy with other Zn and Cd chalcogenides whose NaCl phases have an electron type of conductivity the phase observed may have a NaCl structure.  相似文献   

18.
利用基于密度泛函理论的第一性原理方法,计算了在压力作用下CaF2的结构相变和光学性质。结果证实了CaF2的压致结构转变的顺序是从氟石结构(空间群Fm3m)转变到PbCl2型结构(空间群Pnma),然后继续转变为Ni2In型结构(空间群P63/mmc)。在Fm3m和Pnma两种结构中,电子带隙随着压力的增加而增加,而在P63/mmc结构中,带隙随着压力的增加开始下降。实验结果显示,直到210 GPa,CaF2没有发生由绝缘体到金属的转变。据此推测,CaF2的金属化压力高于300 GPa。还讨论了压力对CaF2光学性质的影响。  相似文献   

19.
Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10 °C to 40 °C using ultrasonic measuring setup. Bleustein–Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids.  相似文献   

20.
The structural phase transitions and the electrical behaviour of the complex perovskite PbLu1/2Nb1/2O3 have been investigated using X-ray powder diffraction, dielectric constant measurements, differential scanning calorimetry and measurement of the polarisation as a function of applied electric field. The high-temperature paraelectric phase is highly ordered. A first-order paraelectric-antiferroelectric phase transition occurs at 270°C and an antiferroelectric-ferroelectric phase transition, characterised by dispersion in the curves of dielectric constant as a function of temperature, occurs at ≈ 30°C. The antiferroelectric phase is isostructural with the orthorhombic form of PbYb1/2Nb1/2O3. The low-temperature ferroelectric phase also has an orthorhombic crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号