首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of poly(ethylene oxide) (PEO, M(w) = 526) brushes of various grafting density (sigma) on nonpolar graphite and hydrophobic (oily) surfaces in aqueous solution has been studied using atomistic molecular dynamics simulations. Additionally, the influence of PEO-surface interactions on the brush structure was investigated by systematically reducing the strength of the (dispersion) attraction between PEO and the surfaces. PEO chains were found to adsorb strongly to the graphite surface due primarily to the relative strength of dispersion interactions between PEO and the atomically dense graphite compared to those between water and graphite. For the oily surface, PEO-surface and water-surface dispersion interactions are much weaker, greatly reducing the energetic driving force for PEO adsorption. This reduction is mediated to some extent by a hydrophobic driving force for PEO adsorption on the oily surface. Reduction in the strength of PEO-surface attraction results in reduced adsorption of PEO for both surfaces, with the effect being much greater for the graphite surface where the strong PEO-surface dispersion interactions dominate. At high grafting density (sigma approximately 1/R(g)(2)), the PEO density profiles exhibited classical brush behavior and were largely independent of the strength of the PEO-surface interaction. With decreasing grafting density (sigma < 1/R(g)(2)), coverage of the surface by PEO requires an increasingly large fraction of PEO segments resulting in a strong dependence of the PEO density profile on the nature of the PEO-surface interaction.  相似文献   

2.
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.  相似文献   

3.
Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)?(-2) and an average distance between grafted chains of 33? for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers.  相似文献   

4.
Conformational changes of a simplified model of grafted poly(ethylene oxide) (PEO) chains were simulated using an off-lattice Monte Carlo model. A random-walk scheme was used in our simulations. The initial polymer structure was modeled with molecular mechanics and models of grafted polymer chains were built using programs developed in our laboratory. During the simulation, all bond angles and bond lengths were kept fixed while the dihedral angles of backbones were changed to search for energy-favorite conformations. Torsional energy, van der Waals interaction, and Coulombic interaction were considered. Periodic boundary conditions were implemented. In addition, the solvent quality was simulated implicitly by modifying the Lennard-Jones 12–6 van der Waals expression. Each PEO chain, 50-monomer long, was represented with a united-atom model. Eight series of simulations with varying solvent quality, simulation temperature, and Coulombic interaction were carried out. For each series, nine different initial grafting densities of grafted PEO chains were considered. Five different conformations were simulated at each grafting density. The calculated system energies, scaling properties, and atom density profiles were studied. Changes in solvent quality produced different structural behaviors. As the grafting density increased, there was a mushroom-to-brush transition, and the scaling property of average layer thickness was dependent on the grafting density.  相似文献   

5.
The adsorption of proteins on poly(2-hydroxyethyl methacrylate) (PHEMA) brushes was systematically investigated from the viewpoint of the size-exclusion effect of the concentrated brushes. By use of surface-initiated atom transfer radical polymerization, well-defined, concentrated PHEMA brushes were successfully grafted on the inner surface of the silica monolithic column with meso pores of ca. 80 nm as well as a silicon wafer and a quartz crystal microbalance (QCM) chip. By eluting low-polydispersity pullulans with different molecular weight through the modified monolithic column, the concentrated PHEMA brush was characterized and demonstrated to sharply exclude solute molecules with the critical molecular size (size-exclusion limit) comparable to the distance between the nearest-neighboring graft points d. The elution behaviors of proteins with different sizes were studied with this PHEMA-grafted column: the protein sufficiently larger than the critical size was perfectly excluded from the brush layer and separated only in the size-exclusion mode by the meso pores without affinity interaction with the brush surface. Then, the irreversible adsorption of proteins on PHEMA brushes was investigated using QCM by varying graft densities (σ = 0.007, 0.06, and 0.7 chains/nm2) and protein sizes (effective diameter = 2–13 nm). A good correlation between the protein size and the graft density was observed: proteins larger than d caused no significant irreversible adsorption on the PHEMA brushes. Thus, we experimentally substantiated the postulated size-exclusion effect of the concentrated brushes and confirmed that this effect plays an important role for suppressing protein adsorption.  相似文献   

6.
We covalently immobilized poly(ethylene oxide) (PEO) chains onto a fluorinated ethylene propylene copolymer (FEP) surface. On the FEP surface, aldehyde groups were first deposited by plasma polymerization of acetaldehyde or acrolein. Then, amino‐PEO chains were immobilized through Schiff base formation, which was followed by reduction stabilization with sodium cyanoborohydride. The PEO‐grafted polymer surfaces thus prepared were characterized by X‐ray photoelectron spectroscopy (XPS), atomic force microscopy, contact‐angle measurements, and protein adsorption. The dramatic increase in the C O intensity of the high‐resolution XPS C 1s spectrum, together with an overall increase in oxygen content, indicated the successful attachment of PEO chains onto the acetaldehyde plasma surfaces. The amount of grafted PEO chains depended on the superfacial density of the plasma‐generated aldehyde groups. The grafted monoamino‐PEO chains formed a brushlike structure on the polymer surface, whereas the bisamino‐PEO chains predominately adopted a looplike conformation. The PEO surface had a regular morphology with greater roughness than the aldehyde surface underneath. Surface hydrophilicity increased with the grafting of PEO. Also, the bisamino‐PEO‐grafted surface had slightly higher surface hydrophilicity than its monoamino‐PEO counterpart. These PEO coatings reduced fibrinogen adsorption by 43% compared with the substrate FEP surface. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2323–2332, 2000  相似文献   

7.
This theoretical study is focused on the formation of a cylindrical microstructure in a planar polymer brush in the presence of a surfactant. It is assumed that the brush may be nonuniform in the direction along the grafting plane and that there are regions with constant concentrations of monomer units and regions occupied only by the surfactant. The surfactant molecule is simulated by a dimer whose parts interact in a different manner with the monomer units of the polymer. At the interface between these regions, dimer molecules are oriented mainly perpendicularly to this interface and the surface tension is reduced. If the surface energy becomes negative, the formation of a structured brush is more favorable in terms of energy than that of a uniform brush. As a result, there may appear a cylindrical microstructure in which grafted macromolecules are united into strands perpendicular to the grafting plane. The stretching of macromolecules and their interaction with the solvent within the strands are described by the Alexander-de Gennes model, whereas the surface energy is calculated with allowance for the surface curvature of strands at a high degree of amphiphilicity of the surfactant molecules. It is shown that the arising strands have radii of the order of the surfactant-molecule length, while the number of macromolecules per strand is proportional to the surface density of their grafting. With an increase in the grafting density, the strand length increases initially, while the volume fraction of the polymer in a strand remains constant. Furthermore, strands start to shorten and their density grows. Structural characteristics are calculated as a function of the parameter characterizing the degree of amphiphilicity of the solvent molecules, their sizes, and their average energy of interaction with monomer units.  相似文献   

8.
Surface-grafted water-soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys (DOPA = 3,4-dihydroxy-phenylalanine; Lys = lysine) pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm(-2) for a relatively short polypeptoid 10-mer to 0.42 nm(-2) for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present coanalysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an antifouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems.  相似文献   

9.
The physical adsorption of PEO(n)-b-PLL(m) copolymers onto silica nanoparticles and the related properties of poly(ethylene oxide) (PEO)-coated particles were studied as a function of the block copolymer composition. Copolymers adopt an anchor-buoy conformation at the particle surface owing to a preferential affinity of poly(L-lysine) (PLL) blocks with the silica surface over PEO blocks when a large excess of copolymer is used. The interdistance between PEO chains at particle surface is highly dependent on the size of PLL segments; a dense brush of PEO is obtained for short PLL blocks (DP = 10), whereas PEO chains adopt a so-called interacting "mushroom" conformation for large PLL blocks (DP = 270). The size of the PEO blocks does not really influence the copolymer surface density, but it has a strong effect on the PEO layer thickness as expected. Salt and protein stability studies led to similar conclusions about the effectiveness of a PEO layer with a dense brush conformation to prevent colloidal aggregation and protein adsorption. Besides, a minimal PEO length is required to get full stabilization properties; as a matter of fact, both PEO(45)-b-PLL(10) and PEO(113)-b-PLL(10) give rise to a PEO brush conformation but only the latter copolymer efficiently stabilizes the particles in the presence of salt or proteins.  相似文献   

10.
The adsorption behavior of bottle-brush polymers with different charge/PEO ratio on silica was studied using optical reflectometry and QCM-D. The results obtained under different solution conditions clearly demonstrate the existence of two distinct adsorption mechanisms depending on the ratio of charge/PEO. In the case of low-charge density brush polymers (0-10 mol %), the adsorption occurs predominantly through the PEO side chains. However, the presence of a small amount of charge along the backbone (as low as 2 mol %) increases the adsorption significantly above that of the uncharged bottle-brush polymer in pure water. As the charge density of the brush polymers is increased to 25 mol % or larger the adsorption occurs predominantly through electrostatic interactions. The adsorbed layer structure was studied by measuring the layer dissipation using QCM-D. The adsorbed layer formed by the uncharged brush polymer dissipates only a small amount of energy that indicates that the brush lie along the surface, the scenario in which the maximum number of PEO side chains interact with the surface. The adsorbed layers formed by the low-charge density brush polymers (2-10 mol %) in water are more extended, which results in large energy dissipation, whereas those formed by the high-charge density brush polymers (50-100 mol %) have their backbone relatively flat on the surface and the energy dissipation is again low.  相似文献   

11.
The two-gradient version of the Scheutjens-Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with a cationic main chain (among which poly( L-lysine)- graft-poly(ethylene glycol) (PLL- g-PEG) or poly( L-lysine)- graft-polyoxazoline are well-known examples) interacting with negatively charged (metal oxide) solid surfaces. We aim to analyze the copolymer-surface interaction patterns as a function of the molecular architecture parameters. Two regimes are investigated: First, we compute the effective interaction potential versus the distance from the surface for individual bottle brush macromolecules. Here, depending on the grafting ratio and the degree of polymerization of the side chains, the interplay of electrostatic attractions of the main chain to the surface and the steric repulsion of the grafts results in different patterns in the interaction potential and, therefore, in qualitatively different adsorption behavior. In particular, we demonstrate that, at high side chain grafting density and short grafts, the molecular brushes are strongly adsorbed electrostatically onto negatively charged substrates, whereas, in the opposite case of low grafting ratio and high molecular weight of grafts, the steric repulsion of the side chains from the surface dominates the polymer-surface interaction. At intermediate grafting ratios, the adsorption/depletion scenario depends essentially on the ratio between the electrostatic screening length and the thickness of the molecular bottle brush. We further have analyzed the equilibrium adsorbed amount as a function of the macromolecular architecture. Our results are based on a detailed account of attractive and repulsive (including intermolecular in-plane) interactions, and suggest a nonmonotonic dependence of the adsorbed amount on the grafting ratio, in good agreement with the experimental studies for PLL- g-PEG adsorption onto Nb2O5 surfaces. The results of the theoretical modeling are discussed in the context of the optimization of the PLL-g-PEG molecular design parameters in order to create protein-resistant surfaces.  相似文献   

12.
Molecular brushes (densely grafted polymers or bottle-brush macromolecules) were synthesized by the "grafting onto" method via combination of atom transfer radical polymerization (ATRP) and "click" reactions. Linear poly(2-hydroxyethyl methacrylate) (PHEMA) polymers were synthesized first by ATRP. After esterification reactions between pentynoic acid and the hydroxyl side groups, polymeric backbones with alkynyl side groups on essentially every monomer unit (PHEMA-alkyne) were obtained. Five kinds of azido-terminated polymeric side chains (SCs) with different chemical compositions and molecular weights were used, including poly(ethylene glycol)-N3 (PEO-N3), polystyrene-N3, poly(n-butyl acrylate)-N3, and poly(n-butyl acrylate)-b-polystyrene-N3. All click coupling reactions between alkyne-containing polymeric backbones (PHEMA-alkyne) and azido-terminated polymeric SCs were completed within 3 h. The grafting density of the obtained molecular brushes was affected by several factors, including the molecular weights and the chemical structures of the linear SCs, as well as the initial molar ratio of linear chains to alkynyl groups. When linear polymers with "thinner" structure and lower molecular weight, e.g., PEO-N3 with Mn = 775 g/mol, were reacted with PHEMA-alkyne (degree of polymerization = 210) at a high molar ratio of linear chains to alkynyl groups in the backbone, the brush copolymers with the highest grafting density were obtained (Y(grafting) = 88%). This result indicates that the average number of SCs was ca. 186 per brush molecule and the average molecular weight of the brush molecules was ca. 190 kg/mol.  相似文献   

13.
A density functional approach to the retention in a chromatography with chemically bonded phases is developed. The bonded phase is treated as brush built of grafted polymers. The chain molecules are modelled as freely jointed spheres. Segments of all components interact with the surface via the hard wall potential whereas interactions between the segments are described by Lennard-Jones (12-6) potential. The structure of the bonded phase is investigated. The distribution of different solutes in the stationary phases is determined. An influence of the following parameters on the retention is analyzed: the grafting density, the grafted chains length, the strength of molecular interactions, the solute sizes, temperature. The theoretical predictions are consisted with numerous experimental results.  相似文献   

14.
The structure and thermodynamic properties of a system of end-grafted flexible polymer chains grafted to a flat substrate and exposed to a solvent of variable quality are studied by molecular dynamics methods. The macromolecules are described by a coarse-grained bead-spring model, and the solvent molecules by pointlike particles, assuming Lennard-Jones-type interactions between pairs of monomers (epsilon(pp)), solvent molecules (epsilon(ss)), and solvent monomer (epsilon(ps)), respectively. Varying the grafting density sigma(g) and some of these energy parameters, we obtain density profiles of solvent particles and monomers, study structural properties of the chain (gyration radius components, bond orientational parameters, etc.), and examine also the profile of the lateral pressure P( parallel)(z), keeping in the simulation the normal pressure P( perpendicular) constant. From these data, the reduction of the surface tension between solvent and wall as a function of the grafting density of the brush has been obtained. Further results include the stretching force on the monomer adjacent to the grafting site and its variation with solvent quality and grafting density, and dynamic characteristics such as mobility profiles and chain relaxation times. Possible phase transitions (vertical phase separation of the solvent versus lateral segregation of the polymers into "clusters," etc.) are discussed, and a comparison to previous work using implicit solvent models is made. The variation of the brush height and the interfacial width of the transition zone between the pure solvent and the brush agrees qualitatively very well with corresponding experiments.  相似文献   

15.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. It is generally accepted that surface modification of the biomaterials with poly(ethylene oxide) (PEO) substantially reduces protein adsorption and cell adhesion. Dacron® (polyethylene terephthalate) fabric, which is one of the biomaterials commonly used in blood-contacting devices, was grafted with PEO. A simple two-step procedure for covalent grafting of PEO onto the surface of Dacron® fabric was used. The surface was first treated with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymer, to introduce a layer of double bonds onto the surface. The Dacron® surface was then exposed to a solution of Pluronic® F108 (PF108), a commercially available PEO-poly(propylene oxide)-PEO (PEO-PPO-PEO) triblock copolymer. The surface with two adsorbed layers of PEO-PB-PEO and PF108 was γ-irradiated in the presence of PF108 in the bulk solution for a total radiation dose of 0.8 Mrad. The bulk concentrations of PEO-PB-PEO and PF108 were varied to maximize the efficiency of PEO grafting. Fibrinogen adsorption on PEO-grafted surfaces was reduced more than 90%, compared with that on control surfaces, irrespective of the bulk concentrations of polymers used for grafting. Platelet adhesion was also reduced substantially by PEO grafting. Only a few round platelets were able to adhere to the PEO-grafted surface, while the control surface was fully covered with aggregates of activated platelets. PEO grafting on polyethylene terephthalate using PEO-PB-PEO and PEO-PPO-PEO block copolymers is a simple approach that can be used for various other biomaterials.  相似文献   

16.
Adsorption of a model protein to a surface with end-grafted polymers was studied by Monte Carlo simulations. In the model the effect on protein adsorption in the presence of end-grafted polymers was evaluated by calculating the change in free energy between an end-grafted surface and a surface without polymers. The change in free energy was calculated using statistical mechanical perturbation theory. Apart from ordinary athermal polymer-polymer and protein-polymer interactions we also study a broad selection of systems by varying the interaction between proteins and polymers and effective polymer-solvent interactions. The interactions between the molecules span an interval from -0.5 to +0.5 kT. Consequently, general features of protein adsorption to end-grafted surfaces is investigated by systematically changing properties like hydrophilicity/hydrophobicity of the polymer, protein and surface as well as grafting density, degree of polymerization and protein size. Increasing grafting density as well as degree of polymerization decreases the adsorption of protein except in systems with attractive polymer-protein interactions, where adsorption increases with increasing chain length and higher grafting density. At a critical polymer-protein interaction neither chain length nor grafting density affects the free energy of adsorption. Hydrophilic polymers were found to prevent adsorption better than hydrophobic polymers. Very small particles with radii comparable to the size of a polymer segment were, however, better excluded from the surface when using hydrophobic than hydrophilic polymers. For systems with attractive polymer-protein interaction not only the volume of the protein was shown to be of importance but also the size of the exposed surface.  相似文献   

17.
吴奇 《高分子科学》2014,(11):1575-1580
The captioned question has been addressed by the steric effect; namely, the adsorption of proteins on a surface grafted with linear polymer chains decreases monotonically as the grafting density increases. However, there is no quantitative and satisfactory explanation why the adsorption starts to increase when the grafting density is sufficiently high and why polyethylene glycol(PEG) still remains as one of the best polymers to repel proteins. After considering each grafted chain as a molecular spring confined inside a "tube" made of its surrounding grafted chains, we estimated how its free energy depends on the grafting density and chain length, and calculated its thermal energy-agitated chain conformation fluctuation, enabling us to predict an adsorption minimum at a proper grafting density, which agrees well with previous experimental results. We propose that it is such a chain fluctuation that slows down the adsorption kinetically.  相似文献   

18.
Systematic studies on the polymers chemically grafted onto a solid substrate with various grafting densities are presented based on the self-consistent mean-field theory (SCMFT). The distribution of the grafting points is explicitly included and all the three coordinates of each grafting point are fixed during the calculations. The existence of solvent molecules is also explicitly considered in the model and the case of Θ-solvent is investigated. The structure of the system is derived by solving the SCMFT equations in three-dimensional space. For the cases of low grafting density, the system is highly inhomogeneous and typical mushroom-like structures are derived. On the other hand, when the grafting density is high enough, the system is nearly homogeneous along the substrate and the polymer concentration profile is consistent with the numerical results of one dimensional SCMFT calculations. The crossover between "mushroom" regime and polymer brush is obtained by tuning the grafting density. In addition, in brush limit, while the root-mean-squared thickness of the brush is linearly dependent on the degree of polymerization, its dependency on the grafting density is in general more complicated than a simple power law.  相似文献   

19.
Molecular-dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model, which includes excluded volume and backbone connectivity of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and nonequilibrium molecular-dynamics simulations at constant temperature and volume using the dissipative particle dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The obtained boundary conditions and slip length show a rich behavior as a function of grafting density and shear velocity.  相似文献   

20.
In this study, the adsorption of amphiphilic poly(ethylene oxide)-block-polylactide (mPEO-PLA) copolymers from a selective solvent onto a polylactide surface was studied as a method of polylactide surface modification and its effect on nonspecific protein adsorption was evaluated. A series of well defined mPEO-PLA copolymers was prepared to investigate the effect of copolymer composition on the resulting PEO chain density and on the surface resistance to protein adsorption. The copolymers contained PEO blocks with molecular weights ranging between 5600 and 23,800 and with 16-47 wt% of PLA. The adsorption of both the copolymers and bovine serum albumin was quantified by attenuated total reflection FTIR spectroscopy (ATR-FTIR). In addition to the adsorbed copolymer amount, its actual composition was determined. The PEO chain density on the surface was found to decrease with the molecular weight of the PEO block and to increase with the molecular weight of the PLA block. The adsorbed copolymers displayed the ability to reduce protein adsorption. The maximum reduction within the tested series (by 80%) was achieved with the copolymer containing PEO of MW 5600 and a PLA block of the same MW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号