首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-photon excitation spectra from the lowest singlet (1)D(2) level of sulfur atoms were recorded with a tunable vacuum ultraviolet (VUV) radiation source generated by frequency tripling in noble gases. The photolysis of CS(2) at 193 nm was used to produce the singlet S((1)D(2)) sulfur atoms that were then excited to neutral superexcited states with the tunable VUV radiation. These superexcited states undergo autoionization into the first ionization continuum state of S(+)((4)S(3/2) (o))+e(-), which is not directly accessible from the S((1)D(2)) state via an allowed transition. The excitation spectra were recorded by monitoring the S(+) signal in a velocity imaging apparatus while scanning the VUV excitation wavelength. Three new lines were observed in the spectra which have not been previously reported. The full widths at half maximum (FWHM) of each of the observed transitions were determined by fitting the profiles of each absorption resonances with the Fano formula. Autoionization lifetimes tau of these singlet superexcited states were obtained from FWHM using the Uncertainty Principle. Abnormal autoionization lifetimes were found for the 3s(2)3p(3)((2)D(o))nd((1)D(2)) and the 3s(2)3p(3)((2)D(o))ns((1)D(2)) Rydberg series, in which tau(5d) and tau(7s) are shorter than tau(4d) and tau(6s), respectively. This is contrary to the well-known scaling law of tau(n*) proportional, variantn(*3), which should be followed within a series unless there exist perturbations from other series or new channels open up to which some members of the series can decay. Possible perturbations from the nearby triplet series are suspected for causing the broadening of the 5d and 7s levels.  相似文献   

2.
The photoionization efficiency (PIE) and pulsed field ionization-photoion (PFI-PI) spectra for sulfur atoms S(3P2,1,0) and S(1D2) resulting from the 193.3 nm photodissociation of CS2 have been measured using tunable vacuum ultraviolet (vuv) laser radiation in the frequency range of 82 750-83 570 cm(-1). The PIE spectrum of S(3P2,1,0) near their ionization threshold exhibits steplike structures. On the basis of the velocity-mapped ion-imaging measurements, four strong autoionizing peaks observed in the PIE measurement in this frequency range have been identified to originate from vuv excitation of S(1D2). The PFI-PI measurement reveals over 120 previously unidentified new Rydberg lines. They have been assigned as Rydberg states [3p3(4S composite function nd3 D composite function (n=17-64)] converging to the ground ionic state S+(4S composite function) formed by vuv excitations of S(3P2,1,0). The converging limits of these Rydberg series have provided more accurate values, 82 985.43+/-0.05, 83 162.94+/-0.05, and 83 559.04+/-0.05 cm(-1) for the respective ionization energies of S(3P0), S(3P1), and S(3P2) to form S+(4S composite function). The relative intensities of the PFI-PI bands for S(3P0), S(3P1), and S(3P2) have been used to determine the branching ratios for these fine structure states, S(3P0):S(3P1):S(3P2)=1.00:1.54:3.55, produced by photodissociation of CS2 at 193.3 nm.  相似文献   

3.
We have developed an effusive laser photodissociation radical source, aiming for the production of vibrationally relaxed radicals. Employing this radical source, we have measured the vacuum ultraviolet (VUV) photoionization efficiency (PIE) spectrum of the propargyl radical (C(3)H(3)) formed by the 193 nm excimer laser photodissociation of propargyl chloride in the energy range of 8.5-9.9 eV using high-resolution (energy bandwidth = 1 meV) multibunch synchrotron radiation. The VUV-PIE spectrum of C(3)H(3) thus obtained is found to exhibit pronounced autoionization features, which are tentatively assigned as members of two vibrational progressions of C(3)H(3) in excited autoionizing Rydberg states. The ionization energy (IE = 8.674 +/- 0.001 eV) of C(3)H(3) determined by a small steplike feature resolved at the photoionization onset of the VUV-PIE spectrum is in excellent agreement with the IE value reported in a previous pulsed field ionization-photoelectron study. We have also calculated the Franck-Condon factors (FCFs) for the photoionization transitions C(3)H(3) (+)(X;nu(i),i = 1-12)<--C(3)H(3)(X). The comparison between the pattern of FCFs and the autoionization peaks resolved in the VUV-PIE spectrum of C(3)H(3) points to the conclusion that the resonance-enhanced autoionization mechanism is most likely responsible for the observation of pronounced autoionization features. We also present here the VUV-PIE spectra for the mass 39 ions observed in the VUV synchrotron-based photoionization mass spectrometric sampling of several premixed flames. The excellent agreement of the IE value and the pattern of autoionizing features of the VUV-PIE spectra observed in the photodissociation and flames studies has provided an unambiguous identification of the propargyl radical as an important intermediate in the premixed combustion flames. The discrepancy found between the PIE spectra obtained in flames and photodissociation at energies above the IE(C(3)H(3)) suggests that the PIE spectra obtained in flames might have contributions from the photoionization of vibrationally excited C(3)H(3) and/or the dissociative photoionization processes involving larger hydrocarbon species formed in flames.  相似文献   

4.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

5.
The partial photoionization cross sections and asymmetry parameters of S atoms have been measured using constant-ionic-state (CIS) spectroscopy in the photon energy range 10.0-30.0 eV. The ionizations investigated in these CIS experiments are the (3p)(-1) ionizations S(+)((4)S)<--S((3)P), S(+)((2)D)<--S((3)P), and S(+)((2)P)<--S((3)P). For the first time Rydberg series which converge to the fourth ionization limit have been observed and assignments of these series have been proposed. These correspond to excitations to Rydberg states that are parts of series which converge to the fourth ionization limit, S(+)((4)P)<--S((3)P) (3s)(-1), and autoionize to the lower S(+)((4)S), S(+)((2)D), or S(+)((2)P) states. For each series observed in the CIS spectra photoelectron angular distribution studies, combined with other evidence, has allowed the angular momentum character of the free electron on autoionization to be determined.  相似文献   

6.
Double-resonance laser excitation and high-resolution energy dispersive photoelectron spectroscopy were used to determine the ionic rotational-state distributions following vibrational autoionization of Rydberg states of water having principal quantum number n=8-10 and converging to the X (2)B(1) (1,0,0) state of H(2)O(+). Where possible, these states were identified by comparison with results of a calculation based on multichannel quantum defect theory. Symmetry and angular momentum constraints link the observed ionic rotational states to particular values of the orbital angular momentum of the Rydberg electron, l, and to the partial-wave composition of the ejected electron. In particular, this connection allows an unambiguous determination of the even or odd character of the partial waves and provides a test of the predicted character of the autoionizing resonances. The effects of l mixing induced by the nonspherical nature of the ionic field are plainly evident in the ion distributions. The present results also allow a tentative assignment of some resonances to the previously unidentified np Rydberg states.  相似文献   

7.
A 1 + 1' multiphoton ionization (MPI) detection scheme for OH radicals is presented. The spectroscopic approach combines initial excitation on the well-characterized A(2)Σ(+)-X(2)Π band system with vacuum ultraviolet (VUV) ionization via autoionizing Rydberg states that converge on the OH(+) A(3)Π ion state. Jet-cooled MPI spectra on the (1,0) and (2,0) bands show anomalous rotational line intensities, while initial excitation on the (0,0) band does not lead to detectable OH(+) ions. The onset of ionization with the (1,0) band is attributed to an energetic threshold; the combined UV + VUV photon energies are above the first member of the autoionizing (A(3)Π)nd Rydberg series. Comparison of the OH 1 + 1' MPI signal with that from single photon VUV ionization of NO indicates that the cross section for photoionization from OH A(2)Σ(+), v' = 1 is on the order of 10(-17) cm(2).  相似文献   

8.
Excited states of atoms and molecules lying above the ionization threshold can decay by electron emission in a process commonly known as autoionization. The autoionization widths can be calculated conveniently using Fano formalism and discretized atomic and molecular spectra by a standard procedure referred to as Stieltjes imaging. The Stieltjes imaging procedure requires the use of the full discretized spectrum of the final states of the autoionization, making its use for poly-atomic systems described by high-quality basis sets impractical. Following our previous work on photoionization cross-sections, here we show that also in the case of autoionization widths, the full diagonalization bottleneck can be overcome by the use of Lanczos pseudospectra. We test the proposed method by calculating the well-documented autoionization widths of inner-valence-excited neon and apply the new technique to autoionizing states of hydrofluoric acid and benzene.  相似文献   

9.
We explored the continuum structure of Co I and Ni I near the first ionization limit using one-color and two-color two-step photoionization spectroscopy. The ionization spectra of both elements show a large number of autoionizing features. The use of different excitation schemes involving intermediate states with different angular momentum allowed the assignment of the angular momentum for part of the detected autoionizing states. Several of these states could be identified as members of different Rydberg series.  相似文献   

10.
Xenon atoms were produced in their metastable states 5p56s3/22 and 5p56s′1/20 in a pulsed DC discharge in beam,and subsequently excited to the even-parity autoionizing Rydberg states 5p5np′3/21,1/21,and 5p5nf′ 5/23 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable 129Xe were obtained by recording the autoionized Xe+ with time-of-flight ion detection in the photon energy range of 28000-42000cm-1 .A wealth of autoionizing resonances were newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects were derived.  相似文献   

11.
We have studied the dissociative ionization behavior of Na2 molecules using two-color, three photon optical-optical double resonance enhanced excitation via the A(1)Sigma(u)(+) and the 2(1)Pi(g) states. Excess energy ranges from about 150 to about 1500 cm(-1) above threshold for dissociative ionization into ground-state Na and Na(+). Slow atomic Na(+) fragments and Na2(+) molecular ions are detected using a linear time-of-flight spectrometer operated in low field extraction, core sampling mode. To explain the observed energy dependence of the Na(+)/Na2(+) branching ratio, we introduce a semiclassical model for the underlying decay dynamics. Franck-Condon overlap densities for bound-free transitions starting in 2(1)Pi(g) vibrational levels indicate that atomic Na(+) fragments are primarily produced via Rydberg states, with principal quantum number n between 5 and 12, converging to the repulsive 1(2)Sigma(u)(+) first excited-state potential of Na2(+). Dynamics along these Rydberg curves involves competition between electronic (autoionizing) and nuclear (dissociative) degrees of freedom. Within the model, the autoionization lifetime tau auto is the only one free parameter available to fit calculated Na(+)/Na2(+) branching ratios as a function of excess energy to the observed values. The lifetime is assumed to be the same multiple c of the Bohr period of each Rydberg potential. A chi(2)-minimization procedure yields, for the range of principal quantum numbers involved, a most likely value of c = 1.5 +/- 0.3, implying that on average the Rydberg electron completes only 1 to 2 orbits before interaction with the excited core electron leads to autoionization.  相似文献   

12.
Two-dimensional photoelectron spectroscopy of hydrogen iodide (HI) has been performed in the photon energy region of 11.10-14.85 eV, in order to investigate dynamical properties on autoionization and neutral dissociation of Rydberg states HI*(RA) converging to HI+(A 2Sigma1/2(+)). A two-dimensional photoelectron spectrum exhibits strong vibrational excitation of HI+(X 2Pi) over a photon energy region from approximately 12 to 13.7 eV, which is attributable to the autoionizing feature of the 5 dpi HI*(RA) state. A noticeable set of stripes in the photon energy region of 13.5-14.5 eV is assigned as resulting from autoionization of the atomic Rydberg states of I* converging to I+ (3P0 or 3P1). The formation of I* is understood in terms of predissociation of multiple HI*(RA) states by way of the repulsive Rydberg potential curves converging to HI+(4Pi1/2).  相似文献   

13.
Triple-resonance excitation and high-resolution photoelectron spectroscopy are combined to characterize the mode selectivity of vibrational autoionization of the high Rydberg states of NO2. Photoelectron spectra and vibrational branching fractions are reported for autoionizing Rydberg states converging to the NO2+ X 1Sigmag +(110) state, that is, with one quantum in the symmetric stretch, nu1, and one quantum in the bending vibration, nu2. These results indicate that autoionization proceeds most efficiently through the loss of one quantum from the symmetric stretch rather than from the bending vibration. The implications of this result are discussed in terms of the autoionization mechanism.  相似文献   

14.
Optical-optical-optical triple resonance spectroscopy isolates transitions to vibrationless Rydberg states of BH with principal quantum numbers from n=7 to 50. Corresponding resonances appear in the excitation spectrum of excited boron atoms produced by the dissociative relaxation of these states. The decay to neutral products occurs on a nanosecond time scale. Yet, corresponding resonances show Fano coupling widths that approach 1 cm-1. Above threshold, spontaneous ionization dominates, but line shapes match for resonances with the same electron orbital quantum numbers built on v+=0 and v+=1 cores. This striking feature-for-feature similarity in predissociation and autoionization line shapes affirms that inelastic electron-cation scattering pathways leading to electron ejection and dissociative recombination proceed through a common continuum.  相似文献   

15.
Ion imaging methods have enabled identification of three mechanisms by which (79)Br(+) and (35)Cl(+) fragment ions are formed following one-color multiphoton excitation of BrCl molecules in the wavelength range 324.6 > lambda > 311.7 nm. Two-photon excitation within this range populates selected vibrational levels (v'= 0-5) of the [X (2)Pi(1/2)]5ssigma Rydberg state. Absorption of a third photon results in branching between (i) photoionization (i.e. removal of the Rydberg electron-a traditional 2 + 1 REMPI process) and (ii)pi*<--pi excitation within the core, resulting in formation of one or more super-excited states with Omega= 1 and configuration [A (2)Pi(1/2)]5ssigma. The fate of the latter states involves a further branching. They can autoionize (yielding BrCl(+)(X (2)Pi) ions in a wider range of v(+) states than formed by direct 2 + 1 REMPI). Further, one-photon absorption by the parent ions resulting from direct ionization or autoionization leads to formation of Br(+) and (energy permitting) Cl(+) fragment ions. Alternatively, the super-excited molecules can fragment to neutral atoms, one of which is in a Rydberg state. Complementary ab initio calculations lead to the conclusion that the observed [Cl**[(3)P(J)]4s + Br/Br*] products result from direct dissociation of the photo-prepared super-excited states, whereas [Br**[(3)P(J)]5p + Cl/Cl*] product formation involves interaction between the [A (2)Pi(1/2)]5ssigma and [X (2)Pi(1/2)]5psigma Rydberg potentials at extended Br-Cl bond lengths. Absorption of one further photon by the resulting Br** and Cl** Rydberg atoms leads to their ionization, and thus their appearance in the Br(+) and Cl(+) fragment ion images.  相似文献   

16.
The photoionization efficiency curve (PIE) of C2H3Cl+ formation from C2H3Cl has been measured in wavelength region 105.0- 130.0nm, by using synchrotron radiation single- photon ionization and a quadrupole mass spectromemter as a detector. A series of peaks in region 106.0-117.0nm arise from Rydberg autoionization converging to A2A' state of the vinyl chloride ion, the average quantum defects are δ(ns) = 1.87, δ(np) = 1.51,δ(nd) = 0.22 respectively. The Rydberg transitions of π(2a") → 4d, π(2a") →5d, π(2a")→6s, π(2a") →7s have been assigned also.  相似文献   

17.
18.
The velocity-map imaging technique was used to record photoelectron and photofragment ion images of HCl following two-photon excitation of the E Sigma(+)(0+), V 1Sigma(+)(0+) (nu=9,10,11) states and subsequent ionization. The images allowed us to determine the branching ratios between autoionization and dissociation channels for the different intermediate states. These branching ratios can be explained on the basis of intermediate state electron configurations, since the configuration largely prohibits direct ionization in a one-electron process, and competition between autoionization and dissociation into H* (n=2)+Cl and H+Cl*(4s,4p,3d) is observed. From a fit to the vibrationally resolved photoelectron spectrum of HCl+ it is apparent that a single superexcited state acts as a gateway to autoionization and dissociation into H+Cl*(4s). Potential reconstruction of the superexcited state to autoionization was undertaken and from a comparison of different autoionization models it appears most likely that the gateway state is a purely repulsive and low-n Rydberg state with a (4Pi) ion core.  相似文献   

19.
The far UV absorption spectra of many polyatomic molecules show featureless, broad bands, even though the lifetimes of the underlying electronic states can be long enough to render the states observable. Using photoionization from Rydberg states we measure electron binding energies, thereby referencing the electronic spectra to the adiabatic ionization energy. In trimethylamine, we find that the 3s, the 3p(x,y), and the 3p(z) Rydberg states have binding energies of 3.087, 2.251, and 2.204 eV, respectively. Vibrational motions excited while preparing the Rydberg states do not interfere with the spectra.  相似文献   

20.
We have investigated the ionization threshold behavior of small helium cluster ions (cluster size n=2-10) formed via electron-impact ionization of neutral helium droplets and derive appearance energies for mass-selected cluster ions using a nonlinear least-square-fitting procedure. Moreover, we report magic numbers in the mass spectrum observed at the electron energy of 70 eV. The apparatus used for the present measurements is a hemispherical electron monochromator combined with a quadrupole mass spectrometer. Our experiment demonstrates that helium clusters are not only exclusively formed via direct ionization above the atomic ionization potential but also indirectly via autoionizing Rydberg states. The present results are compared with previous electron-impact and photoionization results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号