首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electronic structure aspects of the quenching reaction Li(2P) + HCl → LiCl + H were studied using ab initio state averaged multiconfiguration self consistent field/configuration interaction methods. This reaction proceeds through an avoided crossing of the 1, 2 2A' potential energy surfaces. A region of strong electronic nonadiabaticity was located and (first derivative) nonadiabatic coupling strengths computed. This region of strong electronic nonadiabaticity occurs near a (local) minimum on the 2 2A' potential energy surface which is exoergic relative to its reactant asymptote, Li(2P) + HCl.  相似文献   

2.
The state-to-state dynamics of the H+D2 reaction is studied by the reactant-product decoupling method using the double many-body expansion potential energy surface. Two approaches are compared: one uses only the lowest adiabatic sheet while the other employs both coupled diabatic sheets. Rotational distributions for the reaction H+D2 (upsilon = 0, j = 0)-->HD(upsilon' = 3, j')+D are obtained at eight different collision energies between 1.49 and 1.85 eV; no significant difference are found between the two approaches. Initial state-selected total reaction probabilities and integral cross sections are also given for energies ranging from 0.25 up to 2.0 eV with extremely small differences being observed between the two sets of results, thus showing that the nonadiabatic effects in the title reaction are negligible at least for small energies below 2.0 eV.  相似文献   

3.
In this work we calculate the photoelectron spectrum of the PtCl(6) (2-) dianion by application of the recently developed third-order Dirac-Hartree-Fock implementation of the one-particle propagator technique allowing for a consistent treatment of spin-orbit and scalar relativistic effects together with electron correlation. For PtCl(6) (2-) a gas phase photoelectron spectrum is available showing clearly discernible structures not reproducible by a nonrelativistic or purely scalar-relativistic computation. A population analysis of the valence orbitals allows for an assignment of the photoelectron peaks and reveals the strong influence of relativity in combination with electron correlation.  相似文献   

4.
We report 355 and 532 nm photoelectron imaging results for H(-)(NH(3))(n) and NH(2)(-)(NH(3))(n), n = 0-5. The photoelectron spectra are consistent with the electrostatic picture of a charged solute (H(-) or NH(2)(-)) solvated by n ammonia molecules. For a given number of solvent molecules, the NH(2)(-) core anion is stabilized more strongly than H(-), yet the photoelectron angular distributions for solvated H(-) deviate more strongly from the unsolvated limit than those for solvated NH(2)(-). Hence, we conclude that solvation effects on photoelectron angular distributions are dependent on the electronic structure of the anion, i.e., the type of the initial orbital of the photodetached electron, rather than merely the strength of solvation interactions. We also find evidence of photofragmentation and autodetachment of NH(2)(-)(NH(3))(2-5), as well as autodetachment of H(-)(NH(3))(5), upon 532 nm excitation of these species.  相似文献   

5.
Photodetachment from NO(-)(N(2)O)(n) cluster anions (n< or =7) is investigated using photoelectron imaging at 786, 532, and 355 nm. Compared to unsolvated NO(-), the photoelectron anisotropy with respect to the laser polarization direction diminishes drastically in the presence of the N(2)O solvent, especially in the 355 nm data. In contrast, a less significant anisotropy loss is observed for NO(-)(H(2)O)(n). The effect is attributed to photoelectron scattering on the solvent, which in the N(2)O case is mediated by the (2)Pi anionic resonance. No anionic resonances exist for H(2)O in the applicable photoelectron energy range, in line with the observed difference between the photoelectron images obtained with the two solvents. The momentum-transfer cross section, rather than the total scattering cross section, is argued to be an appropriate physical parameter predicting the solvent effects on the photoelectron angular distributions in these cluster anions.  相似文献   

6.
The low-resolution photodetachment spectrum of FCH(4) (-) is studied in full dimensionality employing the multi-configurational time-dependent Hartree approach and potential energy surfaces recently developed by Bowman and co-workers. The computed spectrum qualitatively agrees with the low-resolution spectrum measured by Neumark and co-workers. It displays two peaks which can be assigned to different vibrational states of methane in the quasi-bound F[middle dot]CH(4) van der Waals complex. The first intense peak correlates to methane in its vibrational ground state while the second much smaller peak results from methane where one of the bending modes is excited. The present simulations consider only a single potential energy surface for the neutral FCH(4) system and thus do not include spectral contributions arising from transitions to excited electronic states correlating to the F((2)P)?+?CH(4) asymptote. Considering the quantitative differences between the computed and the experimental spectra, one cannot decide whether beside the vibrational excitation of the methane fragment also electronic excitation of FCH(4) contributes to the second peak in the experimental photodetachment spectrum.  相似文献   

7.
Restricted-spin coupled-cluster single-double plus perturbative triple excitation {RCCSD(T)} potential energy functions (PEFs) of the X(2)B2 state of ScO2 and the 1A1 state of ScO2(-) were computed, employing the augmented correlation-consistent polarized-weighted core-valence quadruple-zeta (aug-cc-pwCVQZ) basis set for Sc and augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set for O, and with the outer core Sc 3s(2)3p(6) electrons being explicitly correlated. Franck-Condon factors, which include allowance for Duschinsky rotation and anharmonicity, were calculated using the computed RCCSD(T) PEFs, and were used to simulate the first photodetachment band of ScO2(-). The simulated spectrum matches well with the corresponding experimental 355 nm photodetachment spectrum of Wu and Wang, J Phys Chem A 1998, 102, 9129, confirming the assignment of the photodetachment spectrum and the reliability of the RCCSD(T) PEFs used. Further calculations on low-lying electronic states of ScO2 gave adiabatic relative electronic energies (T(e)'s) of, and vertical excitation energies (T(v)'s) to, the 2A1, 2B1, and 2A2 states of ScO2 (from the X(2)B2 state of ScO2), as well as electron affinities (EAs) and vertical detachment energies (VDEs) to these neutral states from the 1A1 state of ScO2(-).  相似文献   

8.
The sequential photodissociation dynamics of (HI)2 is studied by means of a nonadiabatic wave packet treatment starting from the I*-HI complex. The model reproduces the main experimental findings for photolysis with 266 nm radiation. The results confirm that some of the H atoms dissociated from the I*-HI complex deactivate the I* atom through a HI* intracluster collision which induces an I*-->I electronically nonadiabatic transition. As a consequence, these H fragments become very fast by acquiring nearly all the I* excitation energy, equivalent to the I*I spin-orbit splitting. A most interesting result is the high production of bound I2 fragments in highly excited rovibrational states in the photolysis, indicating that the H dissociation is mainly direct.  相似文献   

9.
Geometry optimization and harmonic vibrational frequency calculations have been carried out on low-lying doublet and quartet electronic states of stannous (tin(II)) dichloride anion (SnCl(2)(-)) employing the CASSCF and RCCSD(T) methods. The small-core fully-relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. The ground electronic state of SnCl(2)(-) is determined to be the X(2)B(1) state, with the A(2)B(2) and ?(4)Sigma state, calculated to be ca. 1.50 and 2.72 eV higher in energy respectively. The electron affinities of the X(1)A(1) and ?(3)B(1) states of SnCl(2) have been computed to be 1.568+/-0.007 and 4.458+/-0.002 eV respectively, including contributions of core correlation and extrapolation to the complete basis set limit. The SnCl(2) (X(1)A(1)) + e <-- SnCl(2)(-) (X(2)B(1)) and SnCl(2) (?(3)B(1)) + e <-- SnCl(2)(-) (X(2)B(1)) photodetachment bands have been simulated with computed Franck-Condon factors, which include an allowance for anharmonicity and Duschinsky rotation.  相似文献   

10.
A model delta-function potential is considered for simulating the interaction of the attached electron in C(60) (-) with the fullerene environment. The analytical expressions for the energy eigenstates, and the Green's function, are used to deduce the one-, two-, and three-photon photodetachment probabilities for C(60) (-). Particularly interesting is the observation that the three-photon photodetachment is greatly enhanced by the bound states with energies close to the energies for resonant absorption of one and two photons, and a resonance in the l=3 state.  相似文献   

11.
The photodetachment of the O(2)(-).H(2)O cluster anion at 780 and 390 nm is investigated in comparison with O(2)(-) using photoelectron imaging spectroscopy. Despite the pronounced shift in the photoelectron spectra, the monohydration has little effect on the photoelectron angular distributions: for a given wavelength and electron kinetic energy (eKE) range, the O(2)(-).H(2)O angular distributions are quantitatively similar to those for bare O(2)(-). This observation confirms that the excess electron in O(2)(-).H(2)O retains the overall character of the 2ppi(g) HOMO of O(2)(-). The presence of H(2)O does not affect significantly the partial wave composition of the photodetached electrons at a given eKE. An exception is observed for slow electrons, where O(2)(-).H(2)O exhibits a faster rise in the photodetachment signal with increasing eKE, as compared to O(2)(-). The possible causes of this anomaly are (i) the long-range charge-dipole interaction between the departing electron and the neutral O(2).H(2)O skeleton affecting the slow-electron dynamics; and (ii) the s wave contributions to the photodetachment, which are dipole-forbidden for pi(g)(-1) transitions in O(2)(-), but formally allowed in O(2)(-).H(2)O due to lower symmetry of the cluster anion and the corresponding HOMO.  相似文献   

12.
In a previous paper we reported a study of the electronic structures of inner valence states of O(2) (+) and the dissociation process, where there remained some questions as to the origins of the dissociation fragment formation of the O+((2)D)+O((3)P) limit in observed spectra. In this paper, we present the results of calculations of the nonadiabatic transition probabilities of the multichannel dissociation process from the inner valence states of O(2) (+) and reproduce the general features of observed spectra previously reported, including fragment formation, using the Zhu-Nakamura theory.  相似文献   

13.
We investigate the relaxation of photoexcited Li(2)(+) chromophores solvated in Ne(n) clusters (n = 2-22) by means of molecular dynamics with surface hopping. The simplicity of the electronic structure of these ideal systems is exploited to design an accurate and computationally efficient model. These systems present two series of conical intersections between the states correlated with the Li+Li(2s) and Li+Li(2p) dissociation limits of the Li(2)(+) molecule. Frank-Condon transition from the ground state to one of the three lowest excited states, hereafter indexed by ascending energy from 1 to 3, quickly drives the system toward the first series of conical intersections, which have a tremendous influence on the issue of the dynamics. The states 1 and 2, which originate in the Frank-Condon area from the degenerated nondissociative 1(2)Π(u) states of the bare Li(2)(+) molecule, relax mainly to Li+Li(2s) with a complete atomization of the clusters in the whole range of size n investigated here. The third state, which originates in the Frank-Condon area from the dissociative 1(2)Σ(u)(+) state of the bare Li(2)(+) molecule, exhibits a richer relaxation dynamics. Contrary to intuition, excitation into state 3 leads to less molecular dissociation, though the amount of energy deposited in the cluster by the excitation process is larger than for excitation into state 1 and 2. This extra amount of energy allows the system to reach the second series of conical intersections so that approximately 20% of the clusters are stabilized in the 2(2)Σ(g)(+) state potential well for cluster sizes n larger than 6.  相似文献   

14.
A variety of density functional theory and ab initio methods, including B3LYP, B98, BP86, CASSCF, CASSCF/RS2, CASSCF/MRCI, BD, BD(T), and CCSD(T), with ECP basis sets of up to the quintuple-zeta quality for Y, have been employed to study the X(2)B2 state of YO2 and the X(1)A1 state of YO2(-). Providing that the Y 4s(2)4p(6) outer-core electrons are included in the correlation treatment, the RCCSD(T) method gives the most consistent results and is concluded to be the most reliable and practical computational method for YO2 and YO2(-). In addition, RCCSD(T) potential energy functions (PEFs) of the X(2)B2 state of YO2 and the X(1)A1 state of YO2(-) were computed, employing the ECP28MDF_aug-cc-pwCVTZ and aug-cc-pVTZ basis sets for Y and O, respectively. Franck-Condon factors, which include allowance for Duschinsky rotation and anharmonicity, were calculated using the computed RCCSD(T) PEFs and were used to simulate the first photodetachment band of YO2(-). The simulated spectrum matches very well with the corresponding experimental 355 nm photodetachment spectrum of Wu, H.; Wang, L.-S. J. Phys. Chem. A 1998, 102, 9129, confirming the reliability of the RCCSD(T) PEFs used. Further calculations on low-lying electronic states of YO2 gave T(e)'s and T(vert)'s of the A(2)A1, B(2)B1, and C(2)A2 states of YO2, as well as EAs and VDEs to these states from the X(1)A1 state of YO2(-). On the basis of the ab initio VDEs obtained in the present study, previous assignments of the second and third photodetachment bands of YO2(-) have been revised.  相似文献   

15.
16.
Tha anti-ulcerogenic mechanism of 2-(E-2-decenoylamino)ethyl 2-(cyclohexylethyl) sulfide (compd. III-1a) was investigated in various gastric defensive factors. Compound III-1a maintained the high molecular glycoprotein (relative content of Fr. I hexose) and accelerated hexosamine synthesis which were reduced by water immersion stress. But plaunotol did not have these actions. The lipid peroxide level in the gastric mucosa from water immersion stressed rat was lowered by the administration of compd. III-1a. Compound III-1a maintained prostaglandin E2 (PGE2) and PGI2 contents which were reduced in the early phase of the stress and accelerated PGs synthesis in the late phase of the stress. Furthermore, compd. III-1a maintained phospholipase A2 (PLA2) activity which was reduced by the stress. The plaunotol treated group showed the same tendency as the compd. III-1a treated group on the lipid peroxide level, PGE2 and PGI2 contents, and PLA2 activity, but the potency of plaunotol was less than that of compd. III-1a. Compound III-1a accelerated gastric cell proliferation in pyloric glands of hydrocortisone treated rats. Tetragastrin accelerated significantly the cell proliferation in fundic glands. The sucralfate treated group showed the same tendency as the compd. III-1a treated group but the potency of sucralfate was less than that of compd. III-1a. The results in the present study suggest that compd. III-1a has a protective action on gastric mucosa.  相似文献   

17.
The enantiomers of 1-(alpha-aminobenzyl)-2-naphthol and 2-(alpha-aminobenzyl)-1-naphthol analogs were separated isothermally on a cellulose-tris-3,5-dimethylphenyl carbamate-based chiral stationary phase (Chiralcel OD-H), at 10 degrees C increments in the range of 5-35 degrees C, using n-hexane/2-propanol/diethylamine as mobile phase. The mobile phase composition and temperature were varied to achieve baseline resolutions in a single chromatographic run. The dependence of the natural logarithms of selectivity factors, In alpha, on the inverse of temperature, 1/T, was used to determine the thermodynamic data of the enantiomers. The thermodynamic data revealed that all the compounds in this study separate via the same enthalpy-driven chiral recognition mechanism.  相似文献   

18.
用三维含时量子散射理论模拟了H+GlH体系在BW2,mBW2,G3势能面上的动力学行为.其计算结果表明,振动量子态对反应几率影响很大;势能面的地形对转动量子态如何影响反应几率起重要作用;反应几率表现出"黄金规则".此外,BW2,mBW2势能面上的反应几率几乎相同,而G3势能面上的反应几率较前者低,大概由于G3的势垒高的缘故.  相似文献   

19.
20.
Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH2C(O)Cl was prepared in its ground electronic state (S0) and excited with a laser at 248 nm to its first excited singlet state (S1). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S1 and S2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S0 and S1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is also supported by the low values of the diabatic couplings on the C-Br scission reaction path. The methodology established in the present study will be used for the construction of global potential energy surfaces suitable for multidimensional dynamics simulations to test these preliminary interpretations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号