首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Gaussian process is proved. We also consider various applications for testing model assumptions in nonparametric multiple regression. The model tests obtained are able to detect local alternatives that converge to zero at an n−1/2-rate, independent of the covariate dimension. We consider in detail a test for additivity of the regression function.  相似文献   

2.
We consider testing for discontinuities in a trend function when the residual process exhibits long memory. Using a wavelet decomposition of the estimated trend function into a low-resolution and a high-resolution component, a test statistic is proposed based on blockwise resampling of estimated residual variances. Asymptotic validity of the test is derived. A simulation study illustrates finite sample properties.  相似文献   

3.
In a recent paper, Eichler (2008) [11] considered a class of non- and semiparametric hypotheses in multivariate stationary processes, which are characterized by a functional of the spectral density matrix. The corresponding statistics are obtained using kernel estimates for the spectral distribution and are asymptotically normally distributed under the null hypothesis and local alternatives. In this paper, we derive the asymptotic properties of these test statistics under fixed alternatives. In particular, we also show weak convergence but with a different rate compared to the null hypothesis. We also discuss potential statistical applications of the asymptotic theory by means of a small simulation study.  相似文献   

4.
Multivariate tree-indexed Markov processes are discussed with applications. A Galton-Watson super-critical branching process is used to model the random tree-indexed process. Martingale estimating functions are used as a basic framework to discuss asymptotic properties and optimality of estimators and tests. The limit distributions of the estimators turn out to be mixtures of normals rather than normal. Also, the non-null limit distributions of standard test statistics such as Wald, Rao’s score, and likelihood ratio statistics are shown to have mixtures of non-central chi-square distributions. The models discussed in this paper belong to the local asymptotic mixed normal family. Consequently, non-standard limit results are obtained.  相似文献   

5.
The purpose of this paper is to derive the stochastic expansion of self-normalized-residual functionals stemming from a class of diffusion type processes observed at high frequency, where total observing period may or may not tend to infinity. The result enables us to construct some explicit statistics for goodness of fit tests, consistent against “presence of a jump component” and “diffusion-coefficient misspecification”; then, the acceptance of the null hypothesis may serve as a collateral evidence for using the correctly specified diffusion type model. Especially, our asymptotic result clarifies how to remove the bias caused by plugging in a diffusion-coefficient estimator.  相似文献   

6.
The purpose of this paper is to investigate kernel density estimators for spatial processes with linear or nonlinear structures. Sufficient conditions for such estimators to converge in L1 are obtained under extremely general, verifiable conditions. The results hold for mixing as well as for nonmixing processes. Potential applications include testing for spatial interaction, the spatial analysis of causality structures, the definition of leading/lagging sites, the construction of clusters of comoving sites, etc.  相似文献   

7.
We consider a continuous time stochastic volatility model. The model contains a stationary volatility process. We aim to estimate the multivariate density of the finite-dimensional distributions of this process. We assume that we observe the process at discrete equidistant instants of time. The distance between two consecutive sampling times is assumed to tend to zero.A multivariate Fourier-type deconvolution kernel density estimator based on the logarithm of the squared processes is proposed to estimate the multivariate volatility density. An expansion of the bias and a bound on the variance are derived.  相似文献   

8.
We develop a martingale-based decomposition for a general class of quadratic forms of Markov chains, which resembles the well-known Hoeffding decomposition of UU-statistics of i.i.d. data up to a reminder term. To illustrate the applicability of our results, we discuss how this decomposition may be used to studying the large-sample properties of certain statistics in two problems: (i) we examine the asymptotic behavior of lag-window estimators in time series, and (ii) we derive an asymptotic linear representation and limiting distribution of UU-statistics with varying kernels in time series. We also discuss simplified examples of interest in statistics and econometrics.  相似文献   

9.
The paper reconsiders the autoregressive aided periodogram bootstrap (AAPB) which has been suggested in Kreiss and Paparoditis (2003) [18]. Their idea was to combine a time domain parametric and a frequency domain nonparametric bootstrap to mimic not only a part but as much as possible the complete covariance structure of the underlying time series. We extend the AAPB in two directions. Our procedure explicitly leads to bootstrap observations in the time domain and it is applicable to multivariate linear processes, but agrees exactly with the AAPB in the univariate case, when applied to functionals of the periodogram. The asymptotic theory developed shows validity of the multiple hybrid bootstrap procedure for the sample mean, kernel spectral density estimates and, with less generality, for autocovariances.  相似文献   

10.
In this paper we propose a new test for the multivariate two-sample problem. The test statistic is the difference of the sum of all the Euclidean interpoint distances between the random variables from the two different samples and one-half of the two corresponding sums of distances of the variables within the same sample. The asymptotic null distribution of the test statistic is derived using the projection method and shown to be the limit of the bootstrap distribution. A simulation study includes the comparison of univariate and multivariate normal distributions for location and dispersion alternatives. For normal location alternatives the new test is shown to have power similar to that of the t- and T2-Test.  相似文献   

11.
The method of Laplace is used to approximate posterior probabilities for a collection of polynomial regression models when the errors follow a process with a noninvertible moving average component. These results are useful in the problem of period-change analysis of variable stars and in assessing the posterior probability that a time series with trend has been overdifferenced. The nonstandard covariance structure induced by a noninvertible moving average process can invalidate the standard Laplace method. A number of analytical tools is used to produce corrected Laplace approximations. These tools include viewing the covariance matrix of the observations as tending to a differential operator. The use of such an operator and its Green's function provides a convenient and systematic method of asymptotically inverting the covariance matrix.In certain cases there are two different Laplace approximations, and the appropriate one to use depends upon unknown parameters. This problem is dealt with by using a weighted geometric mean of the candidate approximations, where the weights are completely data-based and such that, asymptotically, the correct approximation is used. The new methodology is applied to an analysis of the prototypical long-period variable star known as Mira.  相似文献   

12.
We develop optimal rank-based procedures for testing affine-invariant linear hypotheses on the parameters of a multivariate general linear model with elliptical VARMA errors. We propose a class of optimal procedures that are based either on residual (pseudo-)Mahalanobis signs and ranks, or on absolute interdirections and lift-interdirection ranks, i.e., on hyperplane-based signs and ranks. The Mahalanobis versions of these procedures are strictly affine-invariant, while the hyperplane-based ones are asymptotically affine-invariant. Both versions generalize the univariate signed rank procedures proposed by Hallin and Puri (J. Multivar. Anal. 50 (1994) 175), and are locally asymptotically most stringent under correctly specified radial densities. Their AREs with respect to Gaussian procedures are shown to be convex linear combinations of the AREs obtained in Hallin and Paindaveine (Ann. Statist. 30 (2002) 1103; Bernoulli 8 (2002) 787) for the pure location and purely serial models, respectively. The resulting test statistics are provided under closed form for several important particular cases, including multivariate Durbin-Watson tests, VARMA order identification tests, etc. The key technical result is a multivariate asymptotic linearity result proved in Hallin and Paindaveine (Asymptotic linearity of serial and nonserial multivariate signed rank statistics, submitted).  相似文献   

13.
Summary For a realization of lengthn from a covariance stationary discrete time process with spectral density which behaves like 1–2H as 0+ for 1/2<H<1 (apart from a slowly varying factor which may be of unknown form), we consider a discrete average of the periodogram across the frequencies 2j/n,j=1,..., m, wherem andm/n0 asn. We study the rate of convergence of an analogue of the mean squared error of smooth spectral density estimates, and deduce an optimal choice ofm.  相似文献   

14.
This paper investigates the rate of convergence of estimating the regression weight function in a functional linear regression model. It is assumed that the predictor as well as the weight function are smooth and periodic in the sense that the derivatives are equal at the boundary points. Assuming that the functional data are observed at discrete points with measurement error, the complex Fourier basis is adopted in estimating the true data and the regression weight function based on the penalized least-squares criterion. The rate of convergence is then derived for both estimators. A simulation study is also provided to illustrate the numerical performance of our approach, and to make a comparison with the principal component regression approach.  相似文献   

15.
We study non-parametric tests for checking parametric hypotheses about a multivariate density f of independent identically distributed random vectors Z1,Z2,… which are observed under additional noise with density ψ. The tests we propose are an extension of the test due to Bickel and Rosenblatt [On some global measures of the deviations of density function estimates, Ann. Statist. 1 (1973) 1071-1095] and are based on a comparison of a nonparametric deconvolution estimator and the smoothed version of a parametric fit of the density f of the variables of interest Zi. In an example the loss of efficiency is highlighted when the test is based on the convolved (but observable) density g=f*ψ instead on the initial density of interest f.  相似文献   

16.
The increment ratio (IR) statistic was first defined and studied in Surgailis et al. (2007) [19] for estimating the memory parameter either of a stationary or an increment stationary Gaussian process. Here three extensions are proposed in the case of stationary processes. First, a multidimensional central limit theorem is established for a vector composed by several IR statistics. Second, a goodness-of-fit χ2-type test can be deduced from this theorem. Finally, this theorem allows to construct adaptive versions of the estimator and the test which are studied in a general semiparametric frame. The adaptive estimator of the long-memory parameter is proved to follow an oracle property. Simulations attest to the interesting accuracies and robustness of the estimator and the test, even in the non Gaussian case.  相似文献   

17.
The functional autoregressive model is a Markov model taylored for data of functional nature. It revealed fruitful when attempting to model samples of dependent random curves and has been widely studied along the past few years. This article aims at completing the theoretical study of the model by addressing the issue of weak convergence for estimates from the model. The main difficulties stem from an underlying inverse problem as well as from dependence between the data. Traditional facts about weak convergence in non-parametric models appear: the normalizing sequence is not an , a bias term appears. Several original features of the functional framework are pointed out.  相似文献   

18.
We establish sufficient conditions for perfect simulation of chains of infinite order on a countable alphabet. The new assumption, localized continuity, is formalized with the help of the notion of context trees, and includes the traditional continuous case, probabilistic context trees and discontinuous kernels. Since our assumptions are more refined than uniform continuity, our algorithms perfectly simulate continuous chains faster than the existing algorithms of the literature. We provide several illustrative examples.  相似文献   

19.
We propose a unified strategy for estimator construction, selection, and performance assessment in the presence of censoring. This approach is entirely driven by the choice of a loss function for the full (uncensored) data structure and can be stated in terms of the following three main steps. (1) First, define the parameter of interest as the minimizer of the expected loss, or risk, for a full data loss function chosen to represent the desired measure of performance. Map the full data loss function into an observed (censored) data loss function having the same expected value and leading to an efficient estimator of this risk. (2) Next, construct candidate estimators based on the loss function for the observed data. (3) Then, apply cross-validation to estimate risk based on the observed data loss function and to select an optimal estimator among the candidates. A number of common estimation procedures follow this approach in the full data situation, but depart from it when faced with the obstacle of evaluating the loss function for censored observations. Here, we argue that one can, and should, also adhere to this estimation road map in censored data situations.Tree-based methods, where the candidate estimators in Step 2 are generated by recursive binary partitioning of a suitably defined covariate space, provide a striking example of the chasm between estimation procedures for full data and censored data (e.g., regression trees as in CART for uncensored data and adaptations to censored data). Common approaches for regression trees bypass the risk estimation problem for censored outcomes by altering the node splitting and tree pruning criteria in manners that are specific to right-censored data. This article describes an application of our unified methodology to tree-based estimation with censored data. The approach encompasses univariate outcome prediction, multivariate outcome prediction, and density estimation, simply by defining a suitable loss function for each of these problems. The proposed method for tree-based estimation with censoring is evaluated using a simulation study and the analysis of CGH copy number and survival data from breast cancer patients.  相似文献   

20.
Theorems of approximation of Gaussian processes for the sequential empirical process of the permutations of independent random variables are established. The results are applied to simulate critical values for the functionals of sequential empirical processes used in change point analysis. The proofs are based on the properties of rank statistics and negatively associated random variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号